2016-Sustainable Industrial Processing Summit
SIPS 2016 Volume 1: D'Abreu Intl. Symp. / Iron and Steel Making

Editors:Kongoli F, Noldin JH, Takano C, Lins F, Gomez Marroquin MC, Contrucci M
Publisher:Flogen Star OUTREACH
Publication Year:2016
Pages:320 pages
ISBN:978-1-987820-37-9
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2016_Volume1
CD shopping page

    Microstructure and properties of the pipe steel microalloyed by boron

    Alena Upolovnikova1; Anatoly Babenko1; Vladimir Zhuchkov2; Aleksandr Sychev3; Natalia Sel’menskikh4; Alexander Akberdin5;
    1INSTITUTE OF METALLURGY, Ekaterinburg, Russian Federation; 2INSTITUTE OF METALLURGY OF URAL DIVISION OF RAS, Ekaterinburg, Russian Federation; 3, Ekaterinburg, Russian Federation; 4INSTITUTE OF METALLURGY, URAL BRANCH OF THE RUSSIAN ACADEMY OF SCIENCE, Yekaterinburg, Russian Federation; 5CHEMICAL AND METALLURGICAL INSTITUTE NAMED AFTER ZH.ABISHEV, Karaganda, Kazakhstan;
    Type of Paper: Regular
    Id Paper: 302
    Topic: 2

    Abstract:

    The results of studies of the properties, microstructure and nonmetallic inclusions (NI) in the pipe steel, microalloyed by boron were presented. Experienced rolled metal samples containing 0.005-0.009% boron, characterized by a low content of NI, the volume concentration of which is reduced from 0.035% to 0.016-0.025%. Phase composition NI is represented mainly by small oxysulfide and sulfide inclusions. NI size is 0-5 micrometers in experimental metal rolling and comprises 99.2-99.7% versus 80.6% in the comparative metal. The structure of boron steel is finely dispersed and is represented mainly ferritic phase with a grain of 12.0-12.5 points. Mechanical properties experienced rolled metal thickness of 10 mm tubular steel 17G1SU due to the reduction of pollution NI is represented by small, evenly distributed over the metal volume of oxide and oxysulfide inclusions, the formation of fine ferrite structure and boron present in the form of the introduction of the solution into the lattice and, of α-Fe, provided the release of higher grade X80 strength.

    Keywords:

    Alloy; Properties; Steel; Structure; Technology;

    Cite this article as:

    Upolovnikova A, Babenko A, Zhuchkov V, Sychev A, Sel’menskikh N, Akberdin A. Microstructure and properties of the pipe steel microalloyed by boron. In: Kongoli F, Noldin JH, Takano C, Lins F, Gomez Marroquin MC, Contrucci M, editors. Sustainable Industrial Processing Summit SIPS 2016 Volume 1: D'Abreu Intl. Symp. / Iron and Steel Making. Volume 1. Montreal(Canada): FLOGEN Star Outreach. 2016. p. 239-240.