Editors: | Kongoli F, Noldin JH, Takano C, Lins F, Gomez Marroquin MC, Contrucci M |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2016 |
Pages: | 320 pages |
ISBN: | 978-1-987820-37-9 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The present work includes a kinetic study, focusing zinc ferrite’s formation from an equimolar mixture of pure iron oxide, Fe2O3 and pure zinc oxide ZnO, due to the fact that this substance is an important constituent in the steelmaking processes dusts.
The zinc ferrite that is formed during the operation of steelmaking processes, particularly the electric arc furnaces, can result from an equimolar mixture, although it could be produced from a wide range of constituents compositions. Initially, the equimolar mixture was characterized thermally (DTA -TGA) and structurally (XRD). The temperature where this compound began its formation and the quantitative results regarding the zinc ferrite synthesis conversion were calculated by the software Topas 2.1 Difracc Plus, using the Rietveld XRD method. The following experimental results from the kinetic analysis were obtained: at low-temperature range 873 - 1003 K the phenomena fitted the phase boundary reaction (spherical symmetry model) and the random nucleation (one nucleus on each particle model). The obtained data in both cases were: Ea = 272 and 275 kJ / mol., for the activated energies and 2,32 x 1013 and = 1,23 x 1015 h -1 for the frequency factor, respectively. On the other hand, at high-temperature intervals, 1023 -1273 K, the modified population growth formalism showed the best fit. Again, the obtained data was: Ea = 67 kJ / mol. and = 570 h -1.