Editors: | Kongoli F, Noldin JH, Takano C, Lins F, Gomez Marroquin MC, Contrucci M |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2016 |
Pages: | 320 pages |
ISBN: | 978-1-987820-37-9 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The high levels of phosphorus demand operations of dephosphorization for steel manufacturing steps resulting in high costs. One way to minimize these costs is the removal of phosphorus in the iron ore particles using the acid leaching process; however, depending on how the phosphorus is complexed in the mineral phase requires the application of additional energy. However, when the phosphorus removal process using acid leaching also occur in the ore particles loss of iron and leaching aluminum. The loss of iron is undesirable for the beneficiation process while aluminum is beneficial for the efficiency of the concentration and has a positive effect on the subsequent step of reduction. Currently, there is no viable technology for simultaneous removal of phosphorus and aluminum in iron ore. Understanding the mode of occurrence of these elements in minerals will surely bring new information that eventually may subsidize the development of methods for their removal. In this work, we propose, a model to predict the effects of addition of energy in the iron ore particles using microwave energy due to its efficiency in heat generation. Therefore, in this study, we evaluated the acid leaching process in the iron ore particles targeting of reducing the phosphorus and aluminum contents and was also evaluated the removal of iron in the particles. Through factorial statistical design technique with central and axial points, we determine the optimum conditions employed in the acid leaching process. The following values for experimental optimum conditions were: 19,25g mass of ore, leaching time 20 min, temperature 650C leaching, agitation speed of 620rpm, average particle size of 595 microns, having a 3-minute contact time with the power of microwave. Under these conditions, the reduction of phosphorus content in iron ore sample reached a value of 52.47%