2016-Sustainable Industrial Processing Summit
SIPS 2016 Volume 1: D'Abreu Intl. Symp. / Iron and Steel Making

Editors:Kongoli F, Noldin JH, Takano C, Lins F, Gomez Marroquin MC, Contrucci M
Publisher:Flogen Star OUTREACH
Publication Year:2016
Pages:320 pages
ISBN:978-1-987820-37-9
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2016_Volume1
CD shopping page

    Iron Carburization Rate by Carbon in Slags through Carbon/Slag and Slag/Metal Reactions

    Hideki Ono1; Kenji Tanizawa2; Tateo Usui3;
    1OSAKA UNIVERSITY, Suita, Japan; 2NIPPON STEEL & SUMITOMO METAL CORPORATION, Tokai, Japan; 3OSAKA UNIVERSITY, Ibaraki, Japan;
    Type of Paper: Plenary
    Id Paper: 172
    Topic: 2

    Abstract:

    The carbide capacity of CaO–SiO2–Al2O3 slags and the iron carburization rate through consecutive phases of carbon, slag, and metal are measured at 1723 K. The carbide capacity of high-basicity slag is higher than that of simulated blast-furnace (BF) slag. The iron carburization rate through CaO–SiO2–Al2O3 slags is much smaller than the rate of direct carburization or that through slags including iron oxide. It is found that the carburization rate of iron through slags increases as slag basicity increases. The apparent rate constant of the carburization reaction, k [mol/(m2 s)], is derived as follows: k = 2.71 × 10−5 for the simulated BF slag and k = 8.00 × 10−5 for the high-basicity slag. The rate increases with increasing slag basicity, increasing carbide capacity and decreasing oxygen partial pressure.

    Keywords:

    Blast; CO2; Carbon; Emissions; Ferrous; Furnace; Iron; Measurement; Metallurgy; Slag;

    References:

    [1] Ministry of Economy, Trade and Industry Government of Japan: 2009 Annual Report on Energy (Japan’s “Energy White Paper 2010”), Energy-forum, Tokyo, (2009).
    [2] H. Tanaka: Development of New Ironmaking Process, Bulletin of the ISIJ, 14 (2009), 766-770.
    [3] A. Kasai, M. Naitou, Y. Matsui and J. Yamagata: Reduction and Carburization of Carbon Composite Iron Ore Hot Briquet on Condition of Increasing in Temperature, Tetsu-to-Hagané, 89 (2003), 1212-1219.
    [4] T. Harada, O. Tsuge, H. Tanaka, I. Kobayashi and H. Uemura: Development of New Iron Making Processes, Kobe Steel Engineering Reports, 55 (2005), 128-132.
    [5] M. Inoue, H. Watanabe, H. Sakakiyama, K. Takatani and Y. Oda: Analysis of Reduction Reaction of Coke Composite Cold Bond Pellets in Blast Furnace, Tetsu-to-Hagané, 72 (1986), S885.
    [6] S. Takagi, H. Maeda, A. Yumura, K. Takatani, T. Osawa, Y. Fujiwara and K. Mio: Blast Furnace Operation with High Raito of Coke Composite Cold Bond Pellets, Tetsu-to-Hagané, 72 (1986), S886.
    [7] A. Kasai, Y. Matsui, F. Noma, H. Iwakiri and M. Shimizu: Cold Strength Enhancement Mechanism of Carbon Composite Iron Ore Hot Briquet, Tetsu-to-Hagané, 87 (2001), 313-319.
    [8] N. Ishiwata, Y. Sawa and K.Takeda: The influence of gangune component on carburization and melting of reduced iron, CAMP-ISIJ, 15 (2002), 100.
    [9] ISIJ (The Iron and Steel Institute of Japan): Iron and Steel Production Method (Ironmaking and Steelmaking), Maruzen, Tokyo, (1972), 103, 111.
    [10] K. Nagata: Role of slag on carburizing and smelting of reduced iron, CAMP-ISIJ, 18 (2005), 30-33.
    [11] Y. Iguchi and S. Endo: Carburization and coalescence of reduced iron particles in iron ore-carbon composite pellets heated at elevated temperatures, CAMP-ISIJ, 17 (2004), 148.
    [12] T. Ikeda and M. Maeda: Solubility of Carbon Dioxide in CaO-CaF2-SiO2 Molten Fluxes, Tetsu-to-Hagané, 77 (1991), 209-216.
    [13] J. H. Park and D .J. Min: Carbide Capacity of CaO–SiO2–CaF2(–Na2O) Slags at 1773 K, ISIJ International, 44 (2004), 223-228.
    [14] The 19th Committee on Steelmaking: Chemical Properties of Molten Slags, The Japan Society for the Promotion of the Science, ISIJ, Tokyo, (1991), 187, 189, 196.
    [15] S. Ban-ya: Ferrous Process Metallurgy, The Japan Institute of Metals, Tokyo, (2000), 34.
    [16] A. Nishiwaki and K. Ogino: Density of CaO-SiO2-Al2O3 Molten Slags, Tetsu-to-Hagané, 71 (1985), S121.
    [17] T. Koshida, T. Ogasawara and H. Kishidaka: Viscosity, Surface Tension, and Density of Blast Furnace Slag and Synthetic Slags at Manufacturing Condition of Hard Granulated Slag, Tetsu-to-Hagané, 67 (1981), 1491-1497.
    [18] H. Ono, K. Tanizawa and T. Usui: Rate of Iron Carburization by Carbon in Slags through Carbon / Slag and Slag / Metal Reactions at 1723 K, ISIJ International, 51 (2011), 1274-1278.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Ono H, Tanizawa K, Usui T. Iron Carburization Rate by Carbon in Slags through Carbon/Slag and Slag/Metal Reactions. In: Kongoli F, Noldin JH, Takano C, Lins F, Gomez Marroquin MC, Contrucci M, editors. Sustainable Industrial Processing Summit SIPS 2016 Volume 1: D'Abreu Intl. Symp. / Iron and Steel Making. Volume 1. Montreal(Canada): FLOGEN Star Outreach. 2016. p. 161-172.