2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 9: Physics, Advanced Materials, Multifunctional Materials

Editors:Kongoli F, Dubois JM, Gaudry E, Fournee V, Marquis F
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:275 pages
ISBN:978-1-987820-32-4
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Novel Materials for Fuel Cells Operating on Liquid Fuels

    Cesar Sequeira1; David Cardoso1; Luis Amaral1;
    1INSTITUTO SUPERIOR TECNICO, UNIVERSIDADE DE LISBOA, Lisbon, Portugal;
    Type of Paper: Plenary
    Id Paper: 362
    Topic: 21

    Abstract:

    R&D activity performed during the last three decades has identified four plausible, long-term markets and energy solutions that fuel cell systems may offer: lowest cost energy to end users; solutions for combined heat and power or high-value premium power; peak-shaving solutions; and load-management and grid-power support for unreliable or inconsistent supply. Accordingly, towards rapid commercialisation of fuel cell products in the coming years, the fuel cell system is being redefined by means of a strong concentration on lowering costs of basic elements, electrolytes and membranes, electrode and catalyst materials, and increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs) are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. Independently of these fuel cell types, it is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this lecture, these main directions will be considered.

    Keywords:

    Batteries; Energy; Fuels; Materials;

    References:

    [1] M. Gasik, editor, Materials for Fuel Cells, 2008, Woodhead Publishing Ltd, Cambridge, England
    [2] I. Bar-On, R. Kirchain and R. Roth: Technical cost analysis for PEM fuel cells, J. Power Sources, 109 (1), (2002), 71-75
    [3] R. Hector, r. Colón-Mercado and B. N. Popov: Stability of platinum based alloy cathode catalysts in PEM fuel cells, J. Power Sources, 155 (2), (2006), 253-263
    [4] W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data, 1998, John Wiley and Sans, New York
    [5] N. Sammes, ed., Fuel Cell Technology – Reaching Towards Commercialization, 2007, Springer, London
    [6] B. Sorensen, Hydrogen and Fuel Cells, 2005, Academic Press, New York
    [7] D. Cohen, Earth audit, 2007, May 26, New Scientist, page 34
    [8] U. Demirci: Direct liquid-feed fuel cells: thermodynamic and environmental concerns, J. Power Sources, 159 (2), (2007), 239-246
    [9] A. Serov, M. Padilla, A. J. Roy, P. Atanassov, T. Sakamoto, K. asazawa and H. Tanaka: Anode catalysts for direct hydrazine fuel cells: from laboratory tests to an electric vehicle, Angewandte Chemie , 53 (39), (2014), 10336-10339
    [10] A. Wojcik, H. Middleton, I. Damopoulos and J. V. herle: Ammonia as a fuel in solid oxide fuel cells, J. Power Sources, 118 (1-2), (2003), 342-348
    [11] Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki and W. Sugimoto: Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol, J. Electrochem. Soc., 147 (12), (2000), 4421-4427
    [12] H. A. Gasteiger, N. Markovic, P. N. Ross and E. J. Cairns: Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys, J. Electrochem. Soc., 141 (7), (1994), 1795-1803
    [13] A. S. Aricò, V. Baglio, A. Di Blasi, E. Modica, P. L. Antonnuci and V. Antonucci: Analysis of the high-temperature methanol oxidation behavior at carbon-supported Pt-Ru catalysts, J. Electroanal. Chem., 557, (2003), 167-176
    [14] F. Maillard, G. Q. Lu, A. Wieckowski and V. Stimming: Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation, J. Phys. Chem. B, 109 (34), (2005), 16230-16243
    [15] A. S. Aricò, V. Baglio, E. Modica, A. Di Blasi and V. Antonnuci: Performance of DMFC anodes with ultra-low Pt loading, Electrochem. commun., 6, (2004), 164-169
    [16] M. K. Ravikumar and A. K. Shukla: Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell, J. Electrochem. Soc., 143 (8), (1996), 2601-2606
    [17] Y. Wang, L. Li, L. Hu, L. Zhuang, J. Lu and B. Xu: A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages, Electrochem. commun., 5 (8), (2003), 662-666
    [18] E. H. Yu and K. Scott: Direct methanol alkaline fuel cell with catalyzed metal mesh anodes, Electrochem. commun., 6 (4), (2004), 361-365
    [19] N. Alonso-Vante and H. Tributsch: Energy conversion electrocatalysis via semiconducting transition metal cluster compounds, Nature (London)., 323, (1986), 431-432
    [20] G. Q. Sun, J. T. Wang and R. F. Savinell: Iron (III) tetramethoxyphenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells, J. Appl. Electrochem., 28 (10), (1998), 1087-1093
    [21] S. Imaizunii, K. Shimanse, Y. Teraoka and N. Yamazoe: Oxygen reduction property of ultrafine LaMnO3 dispersed on carbon support, Electrochem. Solid-State Lett., 8(6), (2005), A270-A272
    [22] M. Neergat, A. K. Shukla and K. S. Ganolhi: Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells, J. Appl. Electrochem., 31 (4), (2001), 373-378
    [23] E. Antolini, T. Lopez and F. R. Gonzales: An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells, J. Alloys and compounds, 461, (2008), 253-262
    [24] R. C. Koffi, C. Coutanciau, E. Garnier J. M. Leger and C. Lamy: Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR) Electrochim-Acta, 50 (20), (2005), 4117-4127
    [25] C. F. Zinola, A. M. Castro luna, W. E. Triaca and A. J. Arvia: Electroreduction of molecular oxygen on preferentialy oriented platinum electrodes in acid solution, J. Appl. Electrochem., 24 (2), (1994), 119-125
    [26] V. Baglio, A. Stassi, A. Di Blasi, C. D’urso, V. Antonucci and A. S. Aricò: Investigation of bimetallic Pt-M/C as DMFC cathode catalysts , Electrochem. Acta, 53, (2007), 1360-1364
    [27] G. Faubert, G. Lalande, R. Coté, D. Guay, D. Dodelet, J. P. Weng, L. T. Weng, P. Bertrand and G. Dénés: Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells, Electrochem. Acta, 41 (10), (1996), 1689-1701
    [28] P. Piela, C. Eiches, E. Brosha, F. Garzon and P. Zelenay: Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode, J. Electrochem. Soc., 151, (2004), A2053-A2059
    [29] V. Neburchilov, J. Martin, H. Wang and J. Zhang: A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 169 (2), (2007), 221-238
    [30] D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, I. Cantero: Porous polybenzimidazole membranes doped with phosphoric acid: highly protón-conducting solid electrolytes, Chem. Mater., 16, (2004), 604-607
    [31] Z. Zhou, S. Li, Y. Zhang, M. Liu and W. Li: Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole, J. Am. Chem. Soc., 127, (2005), 10824-10825
    [32] C. Bianchini and P. K. Chen: Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells, Chem. Rev., 109, (2009), 4183-4206
    [33] H. Day: Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res., 35 (12), (2002), 1035-1044
    [34] A. K. Geim and K. S. Novoselov: the rise of graphene, Nat. Mater., 6 (3), (2007), 183-191
    [35] A. F. Che, V. Germain, M. Cretin, D. Cornu, C. Innocent and S. Tingry: Fabrication of free-standing electrospun carbon nanofibers as efficient electrode materials for bioelectrocatalysis, New. J. Chem., 35 (12), (2011), 2848-2853
    [36] S. M. Andersen, M. Borghei, P. Luand, Y. R. Elina, A. Pasanen, E. Kauppinen, V. Ruiz, P. Kauranen and E. M. Skou: Durability of carbon nanofiber (CNF) and carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells, Solid State Ionics, 231, (2013), 94-101
    [37] A. Wieckowski, E. R. Savinova and C. G. Vayenas, Catalysis and Electrocatalysts at Nanoparticle Surfaces, 2003, Marcel Dekker inc, New York
    [38] A. Both Engel, A. Cherifi, S. Tingry, D. Cornu, A. Peigney and C. Laurent: Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: Promising electrodes for enzymatic biofuel cells, Nanotechnology, 24 (24), (2013), 245402
    [39] J. S. Kim and D. H. Reneker: Mechanical properties of composites using ultrafine electrospun fibers, Polym. Compos., 20 (1), (1999), 124-131
    [40] V. Thavasi, G. Singh and S. Ramakrishna: Electrospun nanofibers in energy and environmental apllications, Energy Environ. Sci., 1 (2), (2008), 205-221
    [41] L. Persano, A. Composeo, C. Tekmen and D. Pisignano: Industrial upscaling of electrospinning and applications of polymer nanofibers: A review, Macromol. Mater. Eng., 298 (5), (2013), 504-520
    [42] M. S. A. Rahaman, A. F. Ismail and A. Mustafa: A review of heat treatment on polyacrylonitrile fiber, Polym. Degrad. Stab., 92 (8), (2007), 1421-1432
    [43] M. H. Al-Saleh and U. Sundararaj: A review of vapour grown carbon nanofiber/polymer conductive composites, Carbon New York., 47 (1), (2009), 2-22
    [44] D. D. Edie and M. G. Dunham: Melt spinning pitch-based carbon fibers, Carbon New York, 27 (5), 1989, 647-655
    [45] N. Bhardwaj and S. C. Kundu: Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv., 28 (3), (2010), 325-347
    [46] D. D. Edie: The effect of processing on the structure and properties of carbon fibers, Carbon New York, 36 (4), 1998, 345-362
    [47] A. Caillard, C. Coutanceau, P. Brault, J. Mathias and J-M. Léger: Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC), J. Power Sources, 162, (2006), 66-73
    [48] M. Mougenot, A. Caillard, P. Brault, S. baranton and C. Contanceau: High performance plasma sputtered PdPt fuel cell electrodes with ultra low loading, Int. J. Hydrogen Energy, 36, (2011), 5429-5434
    [49] 49 C. Bianchini and P. K. Shen: Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells, Chem. Rev.,109, (2009), 4183-4206
    [50] P. Andreazza, C. Andreazza-Vignolle, J. P. Rozenbaum, A.-L. Thomann and P. Brault: Nucleation and initial growth of platinum islands by plasma sputter deposition, Surf. Coat. Tech.,151-152 (2002), 122-127
    [51] P. Brault, A. Caillard, A.L. Thomann, J. Mathias, C. Charles, R. W. Boswell, S. Escribano, J. Durand and T. Sanvage: Plasma sputtering deposition of platinum into porous fuel cell electrodes, J. Phys. D: Appl. Phys.,37, (2004), 3419
    [52] A. Caillard, C. Charles and R. Boswell: Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency, Appl. Phys. Lett., 90, (2007), 223119
    [53] A. Chen and P. Holt-Hindle: Platinum-based nanostructured materials: synthesis, properties and applications, Chem. Rev., 110, (2010), 3767-3804
    [54] M. Z. F. Kamarudin, S. K. Kamarudim, M. S. Masdar and W. R. W. Daud: Review: Direct ethanol fuel cells, Int. J. Hydrogen Energy, 38, (2013), 9438-9453
    [55] J. P. Pereira, D. S. Falcão, V. B. Oliveira and A. M. F. R. Pinto: Performance of a passive direct ethanol fuel cell, J. Power Sources, 256, (2014), 14-19
    [56] F. J. Rodriguez Varela and O. Savadogo: Catalytic of carbon-supported electrocatalysis for direct ethanol fuel cell applications, J. Electrochem. Soc., 155, (2008), B618-B624
    [57] S. Y. Shen, T. S. Zhao, J. B. Xuvy and S. Li: Synthesis of PdNi catalysts for the oxidation in alkaline direct ethanol fuel cells, J. Power Sources, 195, (2010), 1001-1006
    [58] E. Antolini: Catalysts for direct ethanol fuel cells, J. Power Sources, 170 (2007), 1-12
    [59] G. F. Cui, S. Q. Song, P. K. Shen, A. Kowal and C. Bianchini: First principles considerations on catalytic activity of Pd toward ethanol oxidation, J. Phys. Chem C, 113, (2009), 15639-15642
    [60] P. Barbaro and C. Bianchini, eds: Catalysis for Sustainable Energy Production, Wiley-UCH, 2009, Weinheim, Germany
    [61] J. Fang, J. Qiao, D. P. Wilkinson and J. Zhang, eds: Electrochemical Polymer Electrolyte Membranes, CRR Press, 2015, Boca Raton, FL, USA
    [62] B. Ladewig, S. P. Jiang and Y. Yan, eds: Materials for Low-Temperature Fuel Cells, Wiley-UCH, 2015, Weinheim, Germany
    [63] Z. P. Li, B. H. Liu, K. Arai, K. Asaba and S. Suda: Evaluation of alkaline borohydride solutions as the fuel for fuel cell, J. Power Sources, 126 (2004), 28-33
    [64] D. M. F. Santos and C. A. C. Sequeira: Sodium borohydride as a fuel for the future, Renew. Sust. Energy Rev, 15 (2011), 3980-4001
    [65] D. M. F. Santos and C. A. C. Sequeira: Cyclic voltammetry investigation of borohydride oxidation at a gold electrode, Electrochim Acta, 55 (2010), 6775-6781
    [66] I. Merino-Jimenez, C. Ponce de León, A. A. Shah and F. C. Walsh: Developments in direct borohydride fuel cells and remaining challenges, J. Power Sources, 219 (2012), 339-357
    [67] D. M. F. Santos and C. A. C. Sequeira: Zinc negative electrode for direct borohydride fuel cells, ECS trans., 16 (2009), 123-137
    [68] J. Ma, N. A. Choudhury and Y. Sahai: A comprehensive review of direct borohydride fuel cells, Renew. Sust. Energy Reviews, 14 (2010), 183-199
    [69] I. Merino-Jimenez, C. Ponce de León and F. C. Walsh: The effect of surfactants on the kinetics of borohydride oxidation and hydrolysis in the DBFC, Electrochim Acta, 133 (2014), 539-545
    [70] I. Merino-Jimenez, M. J. Janik, C. Ponce de León and F. C. Walsh: Pd-Ir alloy as an anode material for borohydride oxidation, J. Power Sources, 269 (2014), 498-508
    [71] C. A. C. Sequeira and A. Hooper, eds: Solid State Batteries, Martinus Nijhoff, 1985, Publishers, Dordrecht, Netherlands
    [72] C. A. C. Sequeira and D. M. F. Santos, eds, Polymer Electrolytes: fundamentals and applications, 2010, Woodhead publishing, Cambridge, UK
    [73] C. A. C. Sequeira, Chemical sensors involving polymer films, in R. G. Linford, ed., 1990, Electrochemical Science and Technology of Polymers-2, Elsevier Applied Science, London, UK
    [74] H. Çelikkan; M. &#350;ahin, ML Aksu and TN Veziro&#287;lu: The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions, Int. J. Hydrogen Energy, 32 (2007), 588-593
    [75] M. Chatenet, F. Micoud, I. Roche and E. Chainet: Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte – Part I: BH4 electrooxidation on Au and Ag catalysts, Electrochim Acta, 51 (2006), 5459-5467
    [76] S. C. Amendola, P. Onnerud, MT Kelly, PJ Petillo, SL Sharp-Goldman and M. Binder: A novel high power density borohydride-air cell, J. Power Sources, 84 (1999), 130-133
    [77] E. Gyenge, M. Atwan and D. Northwood: Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni and Pt-Au) and application for direct borohydride fuel cell anodes, J. Electrochem Soc., 153 (2006), A150-A158
    [78] M. Chatenet, F. H. B. Lima and E. A. Ticianelli: Gold is not a faradaic–efficient borohydride oxidation electrocatalyst: an online electrochemical mass spectrometry study, J. Electrochem Soc., 157 (2010), B697-B704
    [79] J. Ma, Y, Sahai and R. G. Buchleit: Direct borohydride fuel cell using Ni-based composite anodes, J. Power Sources, 195 (2010), 4709-4713
    [80] D. M. F. Santos and C. A. C. Sequeira: Zinc negative electrode for direct borohydride fuel cells, J. Electrochem Soc., 157 (1) (2010), B13-B19
    [81] G. H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom and D. Carroll: Direct NaBH4/H2O2 fuel cells J. Power Sources, 165 (2007), 509-516
    [82] J. Zhi-fang, D. Dong-hong and S. Yan-ping: The electrochemical behaviors of alkaline BH4 on copper anode Battery biomonthly, 133 (2008)
    [83] D. M. F. Santos, B. Sljukic, L. Amaral, C. A. C. Sequeira, D. Macció and A. Saccone: Investigation of nickel-rare earth electrodes for sodium borohydride electrooxidation, ECS trans., 64 (2), (2014), 1095-1102
    [84] D. M. F. Santos, P. G. Saturnino, D. Macció, A. Saccone and C. A. C. Sequeira: Platinum-rare earth intermetallic alloys as anode electrocatalysts for borohydride oxidation, Catalysis Today, 170 (1), (2011), 134-140
    [85] B. Sljukic, J. Milikié, D. M. F. Santos, C. A. C. Sequeira, D. Macció and A. Saccone: Electrocatalytic performance of Pt-Dy alloys for direct borohydride fuel cells, J. Power Sources, 272, (2014), 335-343
    [86] M. D. Hampton, D. V. Shur, S. Y. Zaginaichenko and V. I. Trefilov: Hydrogen Materials Science and chemistry of Metal Hydrides, 2002, Kluwer Academic Publishers, Dordrecht
    [87] H. A. Kiehne: Battery Technology Handbook, 2nd ed., 2003, Expert Verlag Gmb H, Renningeen-malsheim, Germany
    [88] N. A. Choudhury, R.K. Raman, S. Sampath and A. K. Shukla: An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, J. Power Sources, 143, (2005), 1-8
    [89] L. Wang, C. Ma and X. Mao: LmNi4.78Mn0.22 alloy modified with Si used as anodic mateials in borohydride fuel cells, J. Alloys Compounds, 397, (2005), 313-316
    [90] A. Tentorio and U. Casolo-Ginelli: Characterization of reticulate, three-dimensional electrodes, J. Appl. Electrochem., 8, (1978), 195-205
    [91] J. M. Friedrich, C. Ponce-de-León, G. W. Reade and F. C. Walsh: Reticulated vitreous carbon as an electrode material, J. Electroanal. Chem., 561, (2004), 203-217
    [92] C. Ponce-de-León, A. Kulak, s. Williams, I. Merino-Jiménez and F. C. Walsh: Improvements in direct borohydride fuel cells using three-dimensional electrodes, Catal. Today, 170, (2011), 148-154
    [93] U. B. Demirci: Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions, J. Power Sources, 172, (2007), 676-687
    [94] H. Cheng, K. Scott and K. Lovell: Material aspects of the design and operation of direct borohydride fuel cells, Fuel cells, 6, (2006), 367-375
    [95] A. L. Morais, J. R. C. Salgado, B. Sljukic, D. M. F. Santos, C. A. C. Sequeira: Electrochemical behaviour of carbon supported Pt electrocatalysts for H2O2 reduction, Int. J. Hydrogen Energy, 37 (19), (2012), 14143-14151
    [96] Y. G. Wangand, Y. Y. Xia: A direct borohydride fuel cell using MnO2 – catalyzed cathode and hydrogen storage alloy anode, Electrochem. Commun., 8, (2006), 1775-1778
    [97] B. Sljukic, D. M. F. Santos and C. A. C. Sequeira: Manganese dioxide electrocatalysts for borohydride fuel cell cathodes?, J. Electroanal. Chem., 694, (2013), 77-83
    [98] J. Ma, Y. Liu, Y. Yan and P. Zhang: A membraneless direct borohydride de fuel cell using LaNiO3 – catalysed cathode, Fuel Cells, 8, (2008), 394-398
    [99] D. M. F. Santos, N. Sousa, B. Sljukic, C. A. C. Sequeira and F. M. Figueiredo: La2NiO4 ceramic electrodes for hydrogen peroxide electroreduction, ECS Trans., 64 (3), (2014), 1049-1057
    [100] D. M. F. Santos, P. G. Saturnino, R. F. M. Lobo and C. A. C. Sequeira: Direct borohydride/peroxide fuel cells using Prussian blue cathodes, J. Power Sources, 208, (2012), 131-137
    [101] G. Selvarani, S. K. Prashant, A. K. Sahu, P. Sridhar, S. Pitchumani and A. K. Shukla: A direct borohydride fuel cell employing Prussian blue as mediated electron-transfer hydrogen peroxide reduction catalyst, J. Power Sources, 178, (2008), 86-91
    [102] J. H. Kim, H. S. Kim, Y. M. Kang, M. S. Song, S. Rajendran and S. C. Han: Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells, J. Electrochem Soc., 151, (2004), A1039-A1043
    [103] L. Gu, N. Luo and G. H. Miley: Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell, J. Power Sources, 173 (2007), 77-85
    [104] B. Sljukic, J. Milikie, D. M. F. Santos and C. A. C. Sequeira: Carbon-supported Pt0.75 M0.25 (M = Ni or Co) electrocatalysts for borohydride oxidation, Electrochim. Acta, 103, (2013), 577-583
    [105] X. Yang, X. Wei, C. Liu and Y. Liu: The electrocatalytic application of RuO2 in direct borohydride fuel cells, Mater. Chem. Phys., 145, (2014), 269-273
    [106] B. Sljukic, A. L. Morais, D. M. F. Santos and C. A. C. Sequeira: Anion-ar cation-exchange membranes for NaBH4/H2O2 fuel cells?, Membranes, 2 (3), (2012), 478-492
    [107] D. M. F. Santos and C. A. C. Sequeira: Effect of membrane separators on the performance of direct borohydride fuel cells, J. Electrochem Soc., 159 (2), (2012), B126-B132
    [108] H. Cheng and K. Scott: Investigation of Ti mesh-supported anodes for direct borohydride fuel cells, J. Appl. Electrochem, 36, (2006), 1361-1366
    [109] R. K. Raman, S. K. Prashant and A. K. Shukla: A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack, J. Power Sources, 162 (2006), 1073-1076
    [110] N. A. Choudhury, S. K. Prashant, S. Pitchumani, P. Sridhar and A. K. Shukla: Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells, J. Chem. Sci., 121 (2009), 647-654.
    [111] H. Cheng and K. Scott: Investigation of non-platinum cathode catalysts for direct borohydride fuel cells, J. Electroanal. Chem., 596, (2006), 117-123
    [112] J. Ma, J. Wang and Y. Liu: Iron phthalocyanine as a cathode catalyst for a direct borohydride fuel cell, J. Power Sources, 172 (2007), 220-224
    [113] J. Ma, Y. Liu, P. Zhang and J. Wang: A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode, Electrochem Commun, 10, (2008), 100-102
    [114] R. X. Feng, H. Dong, Y. D. Wang, X. P. Ai, Y. L. Cao and H. X. Yang: A simple and high efficient direct borohydride fuel cell with MnO2-catalysed cathode, Electrochem Commun, 7, (2005), 449-452
    [115] A. Verma, A. K. Jha and S. Basu: Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte, J. Power Sources, 141 (2005), 30-34
    &#8195;

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Sequeira C, Cardoso D, Amaral L. Novel Materials for Fuel Cells Operating on Liquid Fuels. In: Kongoli F, Dubois JM, Gaudry E, Fournee V, Marquis F, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 9: Physics, Advanced Materials, Multifunctional Materials. Volume 9. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 185-208.