2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 8: Composite & Ceramic, Quasi-crystals and Nanomaterials

Editors:Kongoli F, Pech-Canul M, Kalemtas A, Werheit H
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:300 pages
ISBN:978-1-987820-31-7
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Synthesis and Characterization of Boron Nitride Powders Produced under Concentrated Light

    Lina Sartinska1; Yeugen Voynich1; Gennadiy Frolov1; Olexander Koval1; Izabella Timofeeva1; Anatoly Kasumov1; Tarik Eren2; Esra Altay2; Cesarius Jastrebski3; Vitaly Tinkov4;
    1FRANTSEVICH INSTITUTE FOR PROBLEMS OF MATERIALS SCIENCE, NAS OF UKRAINE, Kyiv, Ukraine; 2YILDIZ TECHNICAL UNIVERSITY, CHEMISTRY DEPARTMENT, FACULTY OF ART & SCIENCES, Istanbul, Turkey; 3CEPHOMA CENTRE AT FACULTY OF PHYSICS WARSAW UNIVERSITY OF TECHNOLOGY, Warszawa, Poland; 4KURDYUMOV INSTITUTE FOR METAL PHYSICS OF NASU, Kiev, Ukraine;
    Type of Paper: Regular
    Id Paper: 196
    Topic: 18

    Abstract:

    Structural similarity of graphitic carbon and hexagonal BN (h-BN) initiated the intensive studies of BN nanostructures. However, the ionic origin of BN leads to electronic structure and properties of BN structures that significantly differ from that of carbon nanostructures. Therefore, the goal of this work is to synthesize and research the properties of boron nitride powders and BN powders with additives (Ta, Si, In, C, Ni) produced under effect of concentrated light in a flow of nitrogen in a xenon high-flux optical furnace. Scanning and transmission electron and optical microscopes demonstrated structures of new morphologies for the powders, which were formed. X-ray Diffraction study, Raman scattering, Fourier transform infrared (FT-IR) spectroscopy and electron diffraction study have confirmed a complicated structure and phase composition of the powders with a prevalence of the amorphous phases. The study of optical properties was carried out on spectrophotometer. It was demonstrated an effect of experimental conditions, surface modification and additives on phase composition, optical properties, morphology and structure formation. The gaseous model based on an evolution of the bubble was proposed for explanation of nanotubes formation. Burst of these bubbles may result in graphene-like structures formation.
    Keywords: Light heating, Nanostructures

    Keywords:

    Ceramic; Nanocomposites; Nanoparticles; Nanopowder; Nanoscience; Nanotechnology; Nanotubes; Processing; Synthesis;

    References:

    [1] Ansaloni, L. M. S. & de Sousa, E. M. B. Boron Nitride Nanostructured: Synthesis, Characterization and Potential Use in Cosmetics. Mater. Sci. Appl. 04, 22–28 (2013).
    [2] Moussa, G. et al. Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application. Inorganics 2, 396–409 (2014).
    [3] Zhi, C., Bando, Y., Tang, C. & Golberg, D. Boron nitride nanotubes. Mater. Sci. Eng. R Reports 70, 92–111 (2010).
    [4] Kuzhir, P. P. et al. Boron Enriched Unfired Phosphate Ceramics as Neutron Protector. Nanosci. Nanotechnol. Lett. 4, 1104–1109 (2012).
    [5] Nag, A. et al. Graphene analogues of BN: Novel synthesis and properties. ACS Nano 4, 1539–1544 (2010).
    [6] Han, W., Bando, Y., Kurashima, K. & Sato, T. Formation of Boron Nitride (BN) Fullerene-Like Nanoparticles and (BN)xCy Nanotubes Using Carbon Nanotubes as Templates. Jpn. J. Appl. Phys. 38, L755–L757 (1999).
    [7] Chen, Y., Conway, M., Williams, J. S. & Zou, J. Large-quantity production of high-yield boron nitride nanotubes. J. Mater. Res. 17, 1896–1899 (2011).
    [8] Bengu, E. & Marks, L. D. Single-walled BN nanostructures. Phys. Rev. Lett. 86, 2385–2387 (2001).
    [9] Lourie, O. R. et al. CVD Growth of Boron Nitride Nanotubes. 1808–1810 (2000).
    [10] Komatsu, S., Shimizu, Y., Moriyoshi, Y., Okada, K. & Mitomo, M. Preparation of boron nitride nanocapsules by plasma-assisted pulsed laser deposition. J. Appl. Phys. 91, 6181 (2002).
    [11] Oku, T., Kuno, M., Kitahara, H. & Narita, I. Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int. J. Inorg. Mater. 3, 597–612 (2001).
    [12] Dibandjo, P., Bois, L., Chassagneux, F. & Miele, P. Thermal stability of mesoporous boron nitride templated with a cationic surfactant. J. Eur. Ceram. Soc. 27, 313–317 (2007).
    [13] Chen, L. et al. A room-temperature approach to boron nitride hollow spheres. Solid State Commun. 130, 537–540 (2004).
    [14] Hwang, H. J. et al. Boron nitride nanofibers by the electrospinning technique. Macromol. Res. 18, 551–557 (2010).
    [15] Bernard, S., Chassagneux, F., Berthet, M. P., Cornu, D. & Miele, P. Crystallinity, crystalline quality, and microstructural ordering in boron nitride fibers. J. Am. Ceram. Soc. 88, 1607–1614 (2005).
    [16] Paci&#314;, D., Meyer, J. C., Girit, Η. & Zettl, a. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 212–214 (2008).
    [17] Kim, J. et al. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor. Materials (Basel). 7, 5789–5801 (2014).
    [18] Singhal, S. K., Srivastava, A. K. & Mathur, R. B. Growth of Boron Nitride Nanotubes Having Large Surface Area Using Mechanothermal Process. World J. Nano Sci. Eng. 01, 119–128 (2011).
    [19] Rao, C. N. R. & Govindaraj, A. Synthesis of inorganic nanotubes. Adv. Mater. 21, 4208–4233 (2009).
    [20] Frolov, A. A., Sartinska, L. L., Koval’A, Y. & Danilenko, N. A. Application of the optical furnace for nanosized boron nitride production. Nanomaterials 2, 4 (2008).
    [21] Sartinska, L. L. Catalyst-free synthesis of nanotubes and whiskers in an optical furnace and a gaseous model for their formation and growth. Acta Mater. 59, 4395–4403 (2011).
    [22] Sartinska, L. L. et al. Transformation of fine-grained graphite-like boron nitride induced by concentrated light energy. Mater. Chem. Phys. 109, 20–25 (2008).
    [23] Sartinska, L. L., Eren, T., Altay, E. & Frolov, G. A. EFFECT OF MOISTURE ON THE BORON NITRIDE FORMATION FROM ELEMENTS IN A XENON HIGH FLUX OPTICAL FURNACE. 165–168
    [24] Sartinska, L. L. et al. Catalyst-free synthesis and characterization of boron nitride whiskers and nanotubes. Mater. Lett. 65, 1791–1793 (2011).
    [25] Sartinska, L. in Boron Rich Solids 303–318 (Springer, 2011).
    [26] Kotakoski, J., Jin, C. H., Lehtinen, O., Suenaga, K. & Krasheninnikov, a. V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B - Condens. Matter Mater. Phys. 82, 1–4 (2010).
    [27] Zobelli, a. et al. Defective structure of BN nanotubes: From single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006).
    [28] Chkhartishvili, L. Molar Binding Energy of Zigzag and Armchair Single-Walled Boron Nitride Nanotubes. Mater. Sci. Appl. 01, 222–245 (2010).
    [29] Gorbachev, R. V et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–8 (2011).
    [30] Arenal, R. et al. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6, 1812–1816 (2006).
    [31] Wu, J. et al. Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes. Lawrence Berkeley Natl. Lab. (2004). at <http://escholarship.org/uc/item/96c9d6d0#page-5>

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Sartinska L, Voynich Y, Frolov G, Koval O, Timofeeva I, Kasumov A, Eren T, Altay E, Jastrebski C, Tinkov V. Synthesis and Characterization of Boron Nitride Powders Produced under Concentrated Light. In: Kongoli F, Pech-Canul M, Kalemtas A, Werheit H, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 8: Composite & Ceramic, Quasi-crystals and Nanomaterials. Volume 8. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 197-210.