2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 8: Composite & Ceramic, Quasi-crystals and Nanomaterials

Editors:Kongoli F, Pech-Canul M, Kalemtas A, Werheit H
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:300 pages
ISBN:978-1-987820-31-7
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Structural Defects: Essential Elements of Icosahedral Boron-Rich Solids

    Helmut Werheit1;
    1UNIVERSITY DUISBURG-ESSEN, Koeln, Germany (Deutschland);
    Type of Paper: Plenary
    Id Paper: 161
    Topic: 18

    Abstract:

    Boron and boron-rich solids are distinguished by outstanding characteristics like extraordinary high melting points, great hardness, low density and high chemical stability. The neutron absorption cross section of the 10B isotope is very high. The complex icosahedral boron-rich structures vary from the boron allotrope alpa-rhombohedral boron with 12 atoms to YB66 type crystals with 1584 atoms per elementary cell, including boron carbide, the hitherto technically most important and one of the most intensively investigated boron compounds. All of them are essentially composed of nearly regular B12 icosahedra, sometimes containing one carbon atom substituting for boron, forming open networks with hollow spaces in between. These allow accommodating foreign atoms, thus offering a basis for tailoring the individual properties according to technical requirements. Fundamental discrepancies occurred between experimental results proving semiconducting behavior and theoretical calculations predicting metallic character. Reason is the not yet understood tendency of these structures to avoid metallic behavior by generating structural defects in required concentrations. These are high, sometimes in the order of 1 to 10 %, thus explaining that the theoretical calculations based on idealized undistorted structures necessarily failed. According to Ogitsu et al., the partial occupancies of specific regular sites in the beta-rhombohedral boron structure result from a geometrical frustration originating from the intrinsic instability of the B28 subunits. They can be described by an antiferromagnetic Ising model on an expanded Kagome lattice. The experimentally gained electronic band scheme contains numerous acceptor-like gap states and a series of electron traps determining essentially the electronic transport properties. Apart from high concentration of vacancies in the center site of the elementary cell, the structures of boron carbides in the entire homogeneity range (B4.3C to B~11C) consist of B12 and B11C icosahedra and CBC and CBB chains, whose shares depend on the actual chemical composition. As the differently composed elementary cells are statistically distributed, X-ray and neutron diffraction, averaging comparably large volumes, failed in determining the components quantitatively. NMR failed as well. However, phonon spectroscopy on isotope-enriched boron carbide proved suitable to solve this problem. The experimentally determined band scheme of boron carbide, describing the electronic properties consistently, contains high concentrations of various gap states, which are generated by the structural defects. These gap states are responsible for the complex electronic properties.

    Keywords:

    Ceramic; Deformation; Electrons; Interstitial;

    References:

    [1] T. Ogitsu, E. Schwegler, and G. Galli, Chem. Rev. 113 (2013), 3425.
    [2] H Werheit, Solid State Sciences 13 (2011) 1786.
    [3] V. Domnich, S. Reynaud, R. A. Haber and M. Chhowalla, J. Am. Ceram. Soc., 94, 3605 (2011).
    [4] H. Werheit, J. Phys.: Condens. Matter, 19 (2007), 186207.
    [5] H. Werheit, Ceramic Engineering and Science Proceedings (CESP; ICACC – S4 – 012 – 2014); Vol. 35, Issue 4, Adv. in Ceramic Armor X , Jerry C. LaSalvia (Editor ))
    [6] H. Werheit and R. Schmechel, Boron, in Landolt-Börnstein, Numerical data and functional relationships in science and technology Group III, Vol. 41C (Ed. O. Madelung), Springer, Berlin, 1998, p. 3.
    [7] H. Werheit, Boron compounds, in Landolt-Börnstein, Numerical data and functional relationships in science and technology Group III, Vol. 41D (Ed. O. Madelung) Springer, Berlin, (2000) p..
    [8] H. Werheit and U. Kuhlmann, J. Phys.: Condens. Matter 24 (2012) 305401.
    [9] B. Morosin, and A.W. Mullendore, D. Emin, and G.A. Slack, AIP Conf. Proc. 140 (1986), 70.
    [10] T. Lundström, AIP Conf. Proc. 231 (1991), 186.
    [11] U. Kuhlmann and H. Werheit, Solid State Comm. 83 (1992), 849.
    [12] U. Kuhlmann, H. Werheit and K.A. Schwetz, J. Alloys Comp. 189 (1992), 249.
    [13] G.H. Kwei, and B. Morosin, J. Phys. Chem. 100 (1996), 8031.
    [14] H. Werheit, U. Kuhlmann, M. Laux and R. Telle, J. Alloys Comp. 209 (1994), 181.
    [15] H. Werheit, U. Kuhlmann, M. Laux and R. Telle, Japan. J. Appl. Phys. Ser. 10 (1993), 86.
    [16] H. Werheit, U. Kuhlmann, K. Shirai and Y. Kumashiro, J. Alloys Comp. 233 (1996), 121.
    [17] H. Werheit and S. Shalamberidze, J. Phys.: Condens. Matter 24 (2012), 385406.
    [18] B. Calmer, Acta Crystallogr 33 (1977), 1951.
    [19] G.A. Slack, J.H. Rosolowski, C. Hejna, M. Garbauskas and J.S. Kasper, Semiconducting properties of boron in H. Werheit (ed.) Proc. 9th Int. Symp. Boron, Borides and Rel. Comp. Duisburg, Germany, Sept. 21-25, 1987, p. 132.
    [20] G.A. Slack, and C.J. Hejna, and M.F. Garbauskas, and J.S. Kasper, J. Solid State Chem. 28 (1988), 489.
    [21] I. Higashi, AIP Conf. Proc. 140 (1986), 1.
    [22] R. Schmechel and H. Werheit, J. Phys.: Condens. Matter, 11 (1999), 6803.
    [23] H. Werheit, U. Kuhlmann, G. Krach, I. Higashi, T. Lundström and Y. Yu, J. Alloys Comp. 202 (1993), 269.
    [24] I. Higashi, K. Kobayashi, T. Tanaka,and Y. Ishizawa, J. Solid State Chem. 133 (1997), 16.
    [25] H. Werheit, V. Filipov, U. Kuhlmann, U. Schwarz, M. Armbrüster, A. Leithe-Jasper, T. Tanaka, I. Higashi, T. Lundström, V. N. Gurin and M. M. Korsukova, Sci. Technol. Adv. Mater. 11 (2010) 023001.
    [26] R. Schmechel 1998, PhD Thesis Gerhard-Mercator University, Duisburg, Germany
    [27] H. Werheit, U. Kuhlmann and T. Lundström, J. Alloys Comp. 204 (1994) 197.
    [28] Tadashi Ogitsu, François Gygi, John Reed, Masafumi Udagawa, Yukitoshi Motome, Eric Schwegler, and Giulia Galli, Phys. Rev. B 81 (2010), 020102(R).
    [29] Yu.B. Kuz’ma, V.N. Gurin, M.M. Korsukova and L.G. Aksel’rud, Inorg. Mat 23 (1987), 566.
    [30] H. Werheit, J Phys: Conf Series 176 (2009) 012019.
    [31] H. Werheit, M. Laux and U. Kuhlmann, phys, stat. sol. (b) 176 (1993) 415.
    [32] H. Werheit, U. Kuhlmann, M. Laux and T. Lundström, phys. stat. sol. (b) 179 (1993) 489.
    [33] H. Werheit, U. Kuhlmann, M. Laux and T. Lundström, JJAP Series 10 (1994) 92.
    [34] R. Schmechel, H. Werheit, J. Solid State Chem. 154, (2000) 68.
    [35] H. Werheit, C. Janowitz, R. Schmechel, T. Tanaka, and Y. Ishizawa, J. Solid State Chem. 133 (1997) 132.
    [36] H. Werheit, Solid State Sciences (2015), in press; http://dx.doi.org/10.1016/j.solidstatesciences.2014.12.017
    [37] H. Werheit and H.G. Leis, Phys. stat. sol. 41, (1970) 247.
    [38] A. Szadkowski, J. less-common Met. 67 (1979) 551.
    [39] S. Hoffmann and H. Werheit. Solid State Sciences 14 (2012) 1572.
    [40] H. Werheit, M. Schmidt, R. Schmechel and T. Lundström, J. Solid State Chem. 154, 93 (2000).
    [41] H. Werheit, Phys. stat. sol. 29 (1970), 227.
    [42] H. Werheit and R. Franz, Phys. stat. sol. (b) 125 (1984), 779.
    [43] H. Werheit and R. Franz, J. less-common Met. 163 (1986), 17.
    [44] R. Franz, H. Werheit and A.J. Nadolny, AIP Conf. Proc. 140 (1986), 340.
    [45] A. J. Nadolny, phys. stat. sol. (b) 66 (1974), 801.
    [46] C.-D. Siems, J. Less-Common Met., 67 (1979), 155.
    [47] H. Werheit, R. Schmechel, V. Kueffel and T. Lundström, J. Alloys Comp. 262-263 (1997), 372.
    [48] G.A. Slack, C.I. Hejna, M. Garbauskas and J.S. Kasper, J. Solid State Chem. 76 (1988), 64.
    [49] U. Kuhlmann, H. Werheit, J. Pelloth, W. Keune and T. Lundström, phys. stat. sol. (b) 187 (1995), 43.
    [50] H. Werheit, K. de Groot, W. Malkemper and T. Lundström ,J. Less-Common Met 82 (1982), 163.
    [51] U. Kuhlmann, H. Werheit, T. Dose and T. Lundström,, J. Alloys Comp. 186 (1992), 187.
    [52] D.W. Bullett, J. Phys. C: Solid State Phys, 15 (1982), 415.
    [53] K. Momma and F. Izumi, J. Appl. Crystallogr. 44(2011), 1272.
    [54] K. A. Schwetz and P. Karduck, AIP Conf. Proc., 231 (1990), 405.
    [55] U. Kuhlmann, H. Werheit and K. A. Schwetz, J. Alloys Compounds, 189 (1992), 249.
    [56] B. Morosin, G. H. Kwei, A. C. Lawson, T. L. Aselage and D. Emin, J. Alloys Comp. 226 (1995), 121.
    [57] G. H. Kwei and B. Morosin, J. Phys. Chem., 100 (1996), 8031.
    [58] O. Sologub, Y. Michiue and T. Mori, Acta Cryst. E, 68 (2012), i67.
    [59] B. Morosin, G. H. Kwei, A. C. Lawson, T. L. Aselage and D. Emin, J. Alloys Comp. 226 (1995), 121.
    [60] H. Binnenbruck and H. Werheit, J. Less-Common Met., 47 (1976), 91.
    [61] H. Binnenbruck and H. Werheit, Z. Naturforsch. a, 34 (1979), 797.
    [62] U. Kuhlmann, H. Werheit and K. A. Schwetz, J. Alloys Compounds, 189 (1992), 249.
    [63] K. Shirai, Phys. Rev. B, 55 (1997), 12235.
    [64] K, Shirai and S, Emura, J. Solid State Chem., 133 (1997), 93.
    [65] R. Lazzari, N. Vast, J. M. Besson, S. Baroni and A. Dal Corso, Phys. Rev. Lett., 83 (1999), 3230.
    [66] N. Vast, J. Sjakste and E. Betranhandy, J. Phys.: Conf. Ser., 176 (2009), 012012.
    [67] D. M. Bylander, L. Kleinman and S. Lee, Phys. Rev. B, 42 (1990), 1394.
    [68] H. Werheit: Boron Carbide: On Structural Details and Electronic Properties, Ceramic Engineering and Science Proceedings Vol. 35, Issue 4, (2014) Adv. in Ceramic Armor X , Jerry C. LaSalvia (Editor))
    [69] H. Werheit and U. Kuhlmann, J. Phys.: Condens. Matter 23 (2011), 435501.
    [70] R. Schmechel, H.Werheit, T. U. Kampen and W. Mönch J. Solid State Chem. 177 (2004) 566.
    [71] H. Werheit, J. Phys.: Condens. Matter 18 (2006), 10655.
    [72] C. Wood, AIP Conf. Proc., 140 (1985), 206.
    [73] T. L. Aselage, D. Emin and S. S. McCready, Phys. Rev. B, 64 (2001), 054302.
    [74] H. Werheit, Proc. 25th Int. Conf. on Thermoelectrics, Vienna, Austria, (2006) P. Rogl ed. (Piscataway, NJ: IEEE, Catalog Nr. 06TH8931) p. 159.
    [75] H. Werheit, U. Kuhlmann, R. Franz, W. Winkelbauer, B. Herstell, D. Fister and H. Neisius, AIP Conf. Proc. 231 (1991), 104.
    [76] A. C. Switendick, The electronic structure of crystalline boron carbide I: B12 icosahedra and C-B-C chains. In: The Physics and Chemistry of Carbides, Nitrides and Borides, Ed. R. Freer, Kluwer Academic Publisher, Dordrecht, Netherlands, (1990) p. 525.
    [77] H. Kim and M. Kaviany, Phys. Rev. B 87 (2013), 155133.
    [78] D. R. Armstrong, J. Bolland, P. G .Perkins, G. Will and A. Kirfel, Acta Crystallogr. B 39 (1983), 324.
    [79] L. Kleinman, AIP Conf. Proc, 231 (1991), 13.
    [80] M. Calandra, N. Vast and F. Mauri, Phys. Rev. B, 69 (2004), 224505.
    [81] H. Werheit and G. Gerlach, J. Phys.: Condens. Matter 26 (2014), 425801.
    [82] N. F. Mott, Phil. Mag. 19 (1969) 835.
    [83] M. J. Pollak , Non-crystalline Solids 11 (1972) 1.
    [84] C. H. Seager, G. E. Pike, Phys. Rev. B 10 (1974), 1435.
    [85] N. Apsley, H. P. Hughes Phil Mag. 30 (1974) 963.
    [86] H. Overhof 1976, Hopping conductivity in disordered solids, Festkörperprobleme/Advances in Solid State Physics Vol. XVI ed. J. Treusch, Springer, Berlin
    [87] H. Werheit, S. Hoffmann, G. Gerlach, A. Leithe-Jasper, and T. Tanaka, Phase transition and isotope-induced phonon softening in natB4.3C boron carbide at moderate Temperatures, 2015, this conference.
    [88] A. Hushur, M. H. Manghnani, H. Werheit and P. Dera, High-pressure phase transition makes B4.3C boron carbide a wide-gap semiconductor, in preparation (2015).
    [89] K. Shirai, H. Dekura and A. Masago, J. Phys.: Conf. Ser. 176 (2009) 012001.
    [90] A. Ektarawong, S. I. Simak, L. Hultman, J. Birch and B. Alling, Phys. Rev. B 90 (2014) 024204.
    [91] H Werheit, Solid State Sciences (2015) (in press), online available at http://dx.doi.org/10.1016/j.solidstatesciences.2014.12.017
    [92] H. Dekura, K. Shirai and A. Yanase, J Physics: Conf. Series 215 (2010) 012117.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Werheit H. Structural Defects: Essential Elements of Icosahedral Boron-Rich Solids. In: Kongoli F, Pech-Canul M, Kalemtas A, Werheit H, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 8: Composite & Ceramic, Quasi-crystals and Nanomaterials. Volume 8. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 159-180.