2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 7: Ionic Liquids & Energy Production

Editors:Kongoli F, Gaune-Escard M, Mauntz M, Rubinstein J, Dodds H.L.
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:310 pages
ISBN:978-1-987820-30-0
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Application of Molten Salts in the Reprocessing of Spent Oxide Nuclear Fuel

    Carsten Schwandt1;
    1UNIVERSITY OF NIZWA, Nizwa, Oman;
    Type of Paper: Regular
    Id Paper: 191
    Topic: 13

    Abstract:

    Molten salts are an important reaction medium in the reprocessing of spent oxide nuclear fuel. In the conventional process, the oxide mix in the spent fuel is first reduced chemically in a melt of LiCl to the corresponding metals. The metal mix formed is then separated in a eutectic melt of LiCl/KCl by electro-deposition. The FFC-Cambridge Process is a relatively new metallurgical oxide reduction method that would enable the electrochemical oxide-to-metal conversion of the spent oxide fuel in one step in a melt of CaCl2. This article summarises the fundamental aspects of the process and highlights its potential benefits for the reprocessing of spent nuclear fuel.
    Keywords: FFC-Cambridge Process, Spent oxide nuclear fuel, Reprocessing

    Keywords:

    Electrochemical; Metals; Moltensalt; Oxides; Processing

    References:

    [1] G.Z. Chen, D.J. Fray and T.W. Farthing, Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride, Metall. Mater. Trans. B, 32 (2001), 1041–1052.
    [2] G.Z. Chen, D.J. Fray and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407 (2000), 361–364.
    [3] D.J. Fray, Emerging molten salt technologies for metals production, JOM, 53, vol. 10 (2001), 26–31.
    [4] D.J. Fray, Anodic and cathodic reactions in molten calcium chloride, Can. Metall. Quart., 41 (2002), 433–439.
    [5] K.S. Mohandas and D.J. Fray, FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: An overview, T. Indian I. Metals, 57 (2004), 579–592.
    [6] K.S. Mohandas, Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis: a review, T. Min. Metall. C, 122 (2013) 195–212.
    [7] C. Schwandt and D.J. Fray, Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochim. Acta, 51 (2005), 66–76.
    [8] C. Schwandt, D.T.L. Alexander and D.J. Fray, The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochim. Acta, 54 (2009), 3819–3829.
    [9] C. Schwandt and D.J. Fray, The electrochemical reduction of chromium sesquioxide in molten calcium chloride under cathodic potential control, Z. Naturforsch. A, 62 (2007), 655–670.
    [10] D. Sri Maha Vishnu, N. Sanil, L. Shakila, G. Panneerselvam, R. Sudha, K.S. Mohandas and K. Nagarajan, A study of the reaction pathways during electrochemical reduction of dense Nb2O5 pellets in molten CaCl2 medium, Electrochim. Acta, 100 (2013), 51–62.
    [11] C. Schwandt, Understanding the electro-deoxidation of titanium dioxide to titanium metal via the FFC-Cambridge process, T. Min. Metall. C, 122 (2013) 213–218.
    [12] C. Schwandt and D.J. Fray, Preparation of titanium coatings on steel through electro reduction of plasma sprayed and screen printed titanium dioxide deposits, Ironmak. Steelmak., 34 (2007), 225–230.
    [13] R.L. Centeno-Sαnchez, D.J. Fray and G.Z. Chen, Study on the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process, J. Mater. Sci., 42 (2007), 7494–7501.
    [14] D. Hu, W. Xiao and G.Z. Chen, Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts, Metall. Mater. Trans. B, 44 (2013), 272–282.
    [15] C. Schwandt, G.R. Doughty and D.J. Fray, The FFC-Cambridge process for titanium metal winning, Key Eng. Mater., 436 (2010), 13–25.
    [16] United States Government Accountability Office, Nuclear fuel cycle options, http://www.gao.gov/assets/590/585783.pdf (2011).
    [17] Nuclear Energy Agency, OECD, Spent nuclear fuel reprocessing flowsheet, http://www.oecd-nea.org/science/docs/2012/nsc-wpfc-doc2012-15.pdf (2012).
    [18] K.V. Gourishankar and E.J. Karell, Application of lithium in molten-salt reduction processes, in: Light Metals 1999 (1999), pp. 1123–1128.
    [19] E.J. Karell, K.V. Gourishankar, J.L. Smith, L.S. Chow and L. Redey, Separation of actinides from LWR spent fuel using molten-salt-based electrochemical processes, Nucl. Technol., 136 (2001), 342–353.
    [20] K. Gourishankar, L. Redey and M. Williamson, Electrochemical reduction of metal oxides in molten salts, in: Light Metals 2002 (2002), pp. 1075–1082.
    [21] T. Usami, M. Kurata, T. Inoue, H.E. Sims, S.A. Beetham and J.A. Jenkins, Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal, J. Nucl. Mater., 300 (2002), 15–26.
    [22] M. Kurata, T. Inoue, J. Serp, M. Ougier and J.-P. Glatz, Electro-chemical reduction of MOX in LiCl, J. Nucl. Mater., 328 (2004), 97–102.
    [23] Y. Sakamura, M. Kurata and T. Inoue, Electrochemical reduction of UO2 in molten CaCl2 or LiCl, J. Electrochem. Soc., 153 (2006), D31–D39.
    [24] M. Iizuka, Y. Sakamura and T. Inoue, Electrochemical reduction of (U-40Pu-5Np)O2 in molten LiCl electrolyte, J. Nucl. Mater., 359 (2006), 102–113.
    [25] T. Kato, T. Usami, M. Kurata, T. Inoue, H.E. Sims and J.A. Jenkins, Chemical reduction of SIM MOX in molten lithium chloride using lithium metal reductant, Z. Naturforsch. A, 62 (2007), 513–523.
    [26] Y. Sakamura and T. Omori, Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels, Nucl. Technol., 171 (2010), 266–275.
    [27] J.M. Hur, C.S. Seo, S.S. Hong, D.S. Kang and S.W. Park, Metallization of U3O8 via catalytic electrochemical reduction with Li2O in LiCl molten salt, React. Kinet. Catal. Lett., 80 (2003), 217–222.
    [28] S.B. Park, B.H. Park, S.M. Jeong, J.M. Hur, C.S. Seo, S.H. Choi and S.W. Park, Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt, J. Radioanal. Nucl. Chem., 268 (2006), 489–495.
    [29] B.H. Park, S.B. Park, S.M. Jeong, C.S. Seo and S.W. Park, Electrolytic reduction of spent oxide fuel in a molten LiCl-Li2O system, J. Radioanal. Nucl. Chem., 270 (2006), 575–583.
    [30] S.M. Jeong, H.S. Shin, S.S. Hong, J.M. Hur, J.B. Do and H.S. Lee, Electrochemical reduction behavior of U3O8 powder in a LiCl molten salt, Electrochim. Acta, 55 (2010), 1749–1755.
    [31] S.M. Jeong, B.H. Park, J.M. Hur, C.S. Seo, H.S. Lee and K.C. Song, An experimental study on electrochemical reduction of an oxide mixture in the advanced spent-fuel conditioning process, Nucl. Eng. Technol., 42 (2010), 183–192.
    [32] E.Y. Choi, J.M. Hur, I.K. Choi, S.G. Kwon, D.S. Kang, S.S. Hong, H.S. Shin, M.A. Yoo and S.M. Jeong, Electrochemical reduction of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio, J. Nucl. Mater., 418 (2011), 87–92.
    [33] S. Herrmann, S. Li and M. Simpson, Electrolytic reduction of spent light water reactor fuel – Bench-scale experiment results, J. Nucl. Sci. Technol., 44 (2007), 361–367.
    [34] S.D. Herrmann and S.X. Li, Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining, Nucl. Technol., 171 (2010), 247–265.
    [35] S.D. Herrmann, S.X. Li and B.R. Westphal, Separation and recovery of uranium and group actinide products from irradiated fast reactor MOX fuel via electrolytic reduction and electrorefining, Separ. Sci. Technol., 47 (2012), 2044–2059.
    [36] D. Sri Maha Vishnu, N. Sanil, N. Murugesan, L. Shakila, C. Ramesh, K.S. Mohandas and K. Nagarajan, Determination of the extent of reduction of dense UO2 cathodes from direct electrochemical reduction studies in molten chloride medium, J. Nucl. Mater., 427 (2012), 200–208.
    [37] D. Sri Maha Vishnu, N. Sanil, G. Panneerselvam, R. Sudha, K.S. Mohandas and K. Nagarajan, Mechanism of direct electrochemical reduction of solid UO2 to uranium metal in CaCl2-48mol% NaCl melt, J. Electrochem. Soc., 160 (2013), D394–D402.
    [38] D. Sri Maha Vishnu, N. Sanil, G. Panneerselvam, S.K. Mahato, K.V. Soja, K.S. Mohandas and K. Nagarajan, Factors influencing the direct electrochemical reduction of UO2 pellets to uranium metal in CaCl2-48 mol% NaCl melt, J. Electrochem. Soc., 160 (2013), D583–D592.
    [39] REFINE Research Consortium, http://www.refine.eng.ed.ac.uk/.
    [40] C. Schwandt, Spent energy, Mater. World, 21, vol. 2 (2013), 30–31.
    [41] R.C. Copcutt and D.J. Fray, unpublished results.
    [42] A.H. Jones, Masters thesis, The University of Cambridge (2010).

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Schwandt C. Application of Molten Salts in the Reprocessing of Spent Oxide Nuclear Fuel. In: Kongoli F, Gaune-Escard M, Mauntz M, Rubinstein J, Dodds H.L., editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 7: Ionic Liquids & Energy Production. Volume 7. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 67-74.