2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 6: Coatings, Cement, Rare Earth & Ferro-alloys
Editors: | Kongoli F, Yildirim H, Hainer S, Hofmann K, Proske T, Graubner C.A., Albert B |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2015 |
Pages: | 200 pages |
ISBN: | 978-1-987820-29-4 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
< CD shopping page
Fluorescence Study of The Film formation From PS Latex- TiO2 Composites: Effects of TiO2 Content, Film Thickness and Particle Size
Saziye
Ugur1; Onder
Pekcan2; Selin
Sunay3;
1ISTANBUL TECHNICAL UNIVERSITY, Istanbul, Turkey; 2KADIR HAS UNIVERSITY, Istanbul, Turkey; 3PIRI REIS UNIVERSITY, Istanbul, Turkey;
Type of Paper: Regular
Id Paper: 403
Topic: 19Abstract:
Steady-state fluorescence (SSF) technique in conjunction with UV-visible (UVV) technique, atomic force microscope (AFM) and scanning electron microscope (SEM) was used for studying film formation from TiO2 covered polystyrene (PS) latex particles. The effects of TiO2 content, film thickness and PS particle size on the film formation and structure properties of PS/TiO2 composites were studied. For this purpose, in the first part, two different sets of PS films with thicknesses of 5 and 20 μm were prepared from pyrene-(P-) labeled PS particles (320 nm) and covered with various layers of TiO2 using dip-coating method. These films were then annealed at elevated temperatures above glass transition temperature (Tg) of PS in the range of 100–280 0C. Fluorescence emission intensity, Ip from P and transmitted light intensity, Itr were measured after each annealing step to monitor the stages of film formation. The results showed that film formation from PS latexes occurs on the top surface of PS/TiO2 composites and thus developed independent of TiO2 content for both film sets. But the surface morphology of the films was found to vary with both TiO2 content and film thickness. After removal of PS, thin films provide a quite ordered porous structure while thick films showed nonporous structure. In the second Part, two film series were prepared from PS particles with diameters of 203 nm (SmPS) and 382 nm (LgPS) by covering them with different layers of TiO2 and annealed them at elevated temperatures. Results showed that SmPS/TiO2 films undergo complete film formation independent of TiO2 content. However, no film formation occurs above a certain TiO2 content in LgPS/TiO2 films. SEM images showed that SmPS/TiO2 films have highly well-ordered microporous structures with increasing TiO2 content after extraction of PS polymer whereas LgPS/TiO2 composites show no porous structure for high TiO2 content. Our experiments also showed that porous TiO2 films with different sizes could be successfully prepared using this technique.
Keywords:
Coatings; Heat; Industry; Surface; Titanium;
References:
[1] T. Provder, M. A. Winnik, and M. W. Urban, Film Formation inWaterborne Coatings, ACS Symposium Series 648, 1996, American Chemical Society,Washington, DC, USA.
[2] P. R. Sperry, B. S. Snyder, M. L. O’Dowd, and P. M. Lesko: Role of water in particle deformation and compaction in latex film formation, Langmuir, vol. 10, no. 8 (1994), 2619–2628
[3] J. K. Mackenzie and R. Shuttleworth, Proceedings of the Physical Society B: A phenomenological theory of sintering, vol. 62, no. 12 (1949), article 310, 833–852
[4] J. L. Keddie: Film formation of latex, Materials Science and Engineering R, vol. 21 no. 3 (1997), 101–170
[5] J. N. Yoo, L. H. Sperling, C. J. Glinka, and A. Klein: Characterization of film formation from polystyrene latex particles via SANS. 2. High molecular weight, Macromolecules, vol. 24, no. 10 (1991), 2868–2876
[6] O. Pekcan: Interdiffusion during latex film formation, Trends in Polymer Science, vol. 2 (1994), 236-243
[7] D. Wang and H. Mohwald: Template-directed colloidal self-assembly – the route to ‘top-down’ nanochemical engineering, J. Mater. Chem., 14 (2004), 459-468
[8] A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, and D.A. Weitz: Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles, Science, 298 (2002), 1006-1009
[9] E. Chomski and G.A. Ozin: Panoscopic silicon - A material for "all" length scales, Adv. Mater., 12 (2000), 1071-1078
[10] J.H. Moon, S. Kim, G.-R. Yi, Y.-H. Lee, and S.-M. Yang: Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries, Langmuir, 20 (2004), 2033-2035
[11] T. Yamasaki and T. Tsutsui: Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres, Appl. Phys. Lett., 72 (1998), 1957-1959.
[12] Yu. A. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V.N. Astratov: Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals, Appl. Phys. Lett., 71(1997), 1616-1618
[13] A.A. Zakhidov, R. H. Baughman, Z. Ighal, C. Cui, I.Khayrullin, S.O. Dantas, J. Marti, and V.G. Radchenko: Carbon Structures with Three-dimensional Periodicity at Optical Wavelengths, Science, 282 (1998), 897-901
[14] B.T. Holland, C.F. Blanford, and A. Stein: Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids, Science, 281 (1998), 538-540.
[15] Yu. A. Vlasov, N. Yao, and D.J. Norris: Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots, Adv. Mater., 11 (1999), 165-169.
[16] J.D. Joannopoulos, R.D. Meade, and N. Winn, “Photonic Crystals,” in Molding the Flow of Light, 1995, Princeton University Press, N.J. Princeton.
[17] Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris: On-chip natural assembly of silicon photonic bandgap crystals, Nature, 414 (2001), 289-293
[18] A. Blanco, A. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, and H.M. van Driel: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, Nature, 405 (2000), 437-440.
[19] J. Wijnhoven and W.L. Vos: Preparation of Photonic Crystals Made of Air Spheres in Titania Science, 281 (1998), 802-804.
[20] J. S. Liu, J. Feng, and M. A. Winnik: Study of polymer diffusion across the interface in latex films through direct energy transfer experiments, Journal of Chemical Physics, 101 (1994), 9096–9103
[21] S. Ugur, A. Elaissari and O. Pekcan: Void closure and interdiffusion processes during latex film formation from surfactant-free polystyrene particles: a fluorescence study, J. Colloid Interface Sci., 263 (2003), 674-683
[22] S. Ugur, A. Elaissari and O. Pekcan: Film formation from surfactant-free, slightly crosslinked, fluorescein-labeled polystyrene particles, J. Coat. Technol.Res., 1 (2004), 305-313
[23] S. Ugur, S Sunay, A. Elaissari, F. Tepehan and O. Pekcan: Film formation from nano-sized polystrene latex covered with various TiO2 layers, Polym. Comp., 27 (2006), 651–659
[24] S. Ugur, S Sunay, F. Tepehan and O. Pekcan: Film formation from TiO2-polystyrene latex composite: a fluorescence study, Composite Interfaces, 14 (2007), 243–260
[25] M. Canpolat and Ö. Pekcan: Healing and photon diffusion during sintering of high-T latex particles, J. Polym. Sci. Polym. Phys., 34 (1996), 691–698
[26] J. L. Keddie, P. Meredith, R. A. L. Jones and A. M. Donald, Film Formation in Waterborne Coatings, ACS Symp. Ser.,1996, T. Provder, M. A. Winnik and M. W. Urban (Eds), American Chemical Society, 648, 332–348.
[27] G. B. Mc Kenna, Comprehensive Polymer Science, 1989, C. Booth, and C. Price (Eds), Pergamon Press,Vol. 2, Oxford, UK.
[28] H. Vogel: Das Temperaturabhaengigkeitsgesetz der Viskositaet von Fluessigkeiten, Physikalische Zeitschrift, 22 (1925), 645-646.
[29] G. S. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8 (1925), 339-355
[30] J. Frenkel: Viscous flow of crystalline bodies under the action of surface tension, J. Phys. USSR, 9 (1945), 385–391
[31] S. Prager, and M. Tirrell: The healing process at polymer-polymer interfaces, J. Chem. Phys., 75 (1981), 5194-5198
[32] R. P. Wool, B. L. Yuan and O. J. McGarel, J. Polym. Eng. Sci. 29, 1340 (1989).
[33] P. G. de Gennes: Kinetics of diffusion-controlled processes in dense polymer systems. II. Effects of entanglements, J. Chem. Phys., 76 (1982), 3322-3326
[34] Ö. Pekcan and E. Arda: oid closure and interdiffusion in latex film formation by photon transmission and fluorescence methods, Colloids Suf. A, 153 (1999), 537-549
[35] M. S. Sunay, O. Pekcan, Md. Mahbubor Rahman, A. Elaissari, S. Ugur: Spectroscopic study of film formation from polystyrene latex/TiO2 nanocomposites prepared by dip‐coating method, Poly. Eng. Sci., 54 (2014), 288–302
[36] C. Wu, K. K. Chan, K. F. Woo, R. Qian, X. Li, L. Chen, D. H. Napper, G. Tan, and A. J. Hill: Characterization of Pauci-Chain Polystyrene Microlatex Particles Prepared by Chemical Initiator, Macromolecules, 28 (1995), 1592-1597Full Text:
Click here to access the Full TextCite this article as:
Ugur S, Pekcan O, Sunay S. Fluorescence Study of The Film formation From PS Latex- TiO2 Composites: Effects of TiO2 Content, Film Thickness and Particle Size. In: Kongoli F, Yildirim H, Hainer S, Hofmann K, Proske T, Graubner C.A., Albert B, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 6: Coatings, Cement, Rare Earth & Ferro-alloys. Volume 6. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 161-162.