2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 6: Coatings, Cement, Rare Earth & Ferro-alloys

Editors:Kongoli F, Yildirim H, Hainer S, Hofmann K, Proske T, Graubner C.A., Albert B
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:200 pages
ISBN:978-1-987820-29-4
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Investigation of the Carbonation Reactions in Eco-Friendly Cements

    Halil Yildirim1; Kathrin Hofmann2; Tilo Proske2; Stefan Hainer2; Carl-Alexander Graubner2; Barbara Albert3;
    1, Darmstadt, Germany (Deutschland); 2TECHNISCHE UNIVERSITAET DARMSTADT, Darmstadt, Germany (Deutschland); 3TECHNISCHE UNIVERSTIAET DARMSTADT, Darmstadt, Germany (Deutschland);
    Type of Paper: Regular
    Id Paper: 326
    Topic: 9

    Abstract:

    The environmental impact of cement and concrete can be significantly decreased by the reduction of the amount of Portland cement clinker. The substitution of the Portland cement clinker with substitutes like limestone powder results in a decrease of hydration products, such as calcium hydroxide. However, a minimum amount of calcium hydroxide and a high density of the hardened cement pastes are necessary to ensure sufficient alkalinity, which is necessary for the passivation of the steel reinforcement during the life cycle of a building. The development of new eco-friendly cements requires a basic understanding regarding the durability against carbonation induced corrosion of the reinforcement. We are investigating low-water limestone-rich concretes with the aim for a sufficient prediction of the carbonation resistance and hope to support the development of sustainable cements. Because of the low content of hydration products, the approved models describing the carbonation behavior of conventional concretes are not working sufficiently for the mixtures investigated here and therefore, need to be modified. For that reason, the individual phase-pure clinker phases were synthesized and after complete hydration stored under CO2 atmosphere (2 Vol %, 20 A°C, 65% humidity) for 28 days. The products of the hydration- and carbonation-reactions were investigated with X-ray powder diffraction, thermal analysis (DTA/TG), scanning electron microscopy and energy-dispersive X-ray analysis. The results are compared to analyses of conventional clinker phases.

    Keywords:

    Cement; Concrete; Durability; Environment; Hydration; Resistance; Sustainability;

    References:

    [1] Fib Bulletin 67: Guidelines for Green Concrete Structures, 1562-3610. International Federation for Structural Concrete, 2012.
    [2] Proske, T.; Hainer, S.; Jakob, M.; Garrecht, H.; Graubner, C.-A.: Stahlbetonbauteile aus klima- und ressourcenschonendem Ökobeton. Beton- und Stahlbetonbau 6 (2012), 401–413.
    [3] Proske T., Hainer S., Rezvani M., Graubner C-A.; Eco-friendly concretes with
    reduced water and cement contents – mix design principles and laboratorytests, Cement and Concrete Research 51 (2013) 38–46.
    [4] Matschei, T., Lothenbach, B., Glasser F.P.; The role of calcium carbonate in cement hydration, Cement and Concrete Research 37 (2007) 551-558.
    [5] Pelletier-Chaignat, L., Winnefeld, F. ,Lothenbach, B., Müller, J., C.; Beneficial use of limestone filler with calcium sulphoaluminate cement, Construction and Building Materials 26 (2012) 619-627.
    [6] Tsivilis, S., Batis, G., Chaniotakis E., Grigoriadis, G., Theodossis, D.; Properties and behavior of limestone cement concrete and mortar, Cement and Concrete Research 30 (2000) 1679-1683.
    [7] Rahhal, V., Bonevetti, V., Trusilewicz, L., Pedrajas, C., Tolero, R.; Role of the filler on Portland cement hydration at early ages, Construction and Building Materials 27 (2012) 82-90.
    [8] Bonevetti, V., Donza, H., Menendez, G., Cabrera, O., Irassar, E.F.; Limestone filler cement in low w/c concrete: A rational use of energy, Cement and Concrete Research 33 (2003) 865-871.
    [9] Stark, J.; Wicht, W.: Dauerhaftigkeit von Beton, 2. Ed., Springer Verlag, 2013.
    [10] DIN EN 196-1. Methods of testing cement – Part 1: Determination of strength; 2005.
    [11] Wesselky, A., Jensen A. M.; Synthesis of pure Portland cement phases, Cement and Concrete Research 39 (2009) 973-980.
    [12] Jost, K. H., Ziemer, B., R.; Redetermination of the Structure of &#946;-Dicalcium Silicate, Acta Cryst. B33 (1977) 689.
    [13] Vanpeteghem, B. C., Ross, J. A., Jing Zhao, N. L., Ross, G., Redhammer, J., Seifert, F.; The effect of oxygen vacancies and aluminum substitution on the high-pressure properties of brownmillerite-structured Ca2Fe 2-x Al xO 5, Phys. Chem. Minerals 35 (2008) 493–504.
    [14] Mondal, P., Jeffery, J. W.; The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6, Acta Cryst. B31 (1977) 1696-1700.
    [15] De la Torre, A.G., De Vera, R. N., Cubero, A. J. M., Aranda, A.G.M; Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis, Cement and Concrete Research 38 (2008) 1261-1269.
    [16] Alvarez Ayuso, E., Nugreten, H.W.; Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodizing industry, Water Research 39 (2005) 65-72.
    [17] DIN 66133: Determination of pore volume distribution and specific surface area of solids by mercury intrusion; 1993.
    [18] Programme TOPAS 4.2, Bruker AXS, Karlsruhe, Germany, 2009.
    [19] Sha, W., O`Neill, E. A., Guo, Z.; Differential Scanning calorimetry of ordinary Portland cement, Cement and Concrete Research 29 (1999) 1487-1489.
    [20] Geraldine, V., Thiery, M., Platret, G.; Measurement of carbonation profile in concrete: Thermogravimetry, chemical analysis and gamma densimetry, Cement and Concrete Research 37 (2007) 1182-1192.
    [21] Moore, A. E., Taylor, H. F. W.; Crystal Structure of Ettringite Acta Cryst. B26 (1970) 386.
    [22] Francois, M., Renaudin, G., Evrard, O.; A cementitious compound with composition 3CaO . Al2O3·CaCO3· 11H2O, Acta Cryst. C54 (1998) 1214-1217.
    [23] Kamhi, S.R.; On the structure of vaterite, CaCO3, Acta Cryst. 16 (1963) 770-772.
    [24] Jarosch, D., Heger, G.: Neutron diffraction refinement of the crystal structure of Aragonite, TMPM 35 (1986) 127-131.
    [25] Maslen E. N., Streltsov V. A., Streltsova N. R.: X-ray study of the electron density in calcite, CaCO3, Acta Cryst. B49 (1993) 636-641
    [26] Schroepfer, L., Bartl, H.; Oriented decomposition and reconstruction of hydrogarnet, Ca3Al2(OH)12, European Journal of Mineralogy 5 (1993) 1133-1144.
    [27] Bezou C., Christensen, A.N., Cox, D., Lehmann, M., Nonat, A.; Investigation of the crystal structure of gamma-CaSO4•0.5(H2 O) and CaSO4•0.6 (H2 O) by powder diffraction methods, J. Solid State Chem., 117 (1995) 165-176.
    [28] Morandeau, A., Thiery, A; Investigation of the carbonations mechanism of Changes C-S-H in terms of kinetics, microstructure changes and moisture properties, Cement and Concrete Research 56 (2014) 153-170.
    [29] Borges, H. R. P., Costa, O. J., Milestone, B. N., Lynsdale, J. C., Streatfield, E. R.; Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS, Cement and Concrete Research 40 (2010) 284-292.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Yildirim H, Hofmann K, Proske T, Hainer S, Graubner C, Albert B. Investigation of the Carbonation Reactions in Eco-Friendly Cements. In: Kongoli F, Yildirim H, Hainer S, Hofmann K, Proske T, Graubner C.A., Albert B, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 6: Coatings, Cement, Rare Earth & Ferro-alloys. Volume 6. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 65-78.