2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 3: Takano Intl. Symp. / Metals & Alloys Processing
Editors: | Kongoli F, Noldin JH, Mourao MB, Tschiptschin AP, D'Abreu JC |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2015 |
Pages: | 550 pages |
ISBN: | 978-1-987820-26-3 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
< CD shopping page
Evaluation of Energy Improvement of Gases Generated in Charcoal Production by Microwave
Anderson
S. Morais1; Thales Eduardo
Leal2; Tiago
Oliveira3; Paulo
Assis4; Alessandra
Daniel5; Marco
Porto5; Jaderson
Ilidio6; Renan
Artilha2; Lucas
Silva2; Kelly
Ribeiro7;
1ONDATEC - TECNOLOGIA INDUSTRIAL EM MICRO-ONDAS, UBERABA, Brazil; 2FEDERAL UNIVERSITY OF OURO PRETO, Ouro Preto, Brazil; 3REDEMAT UFOP, Itabirito, Brazil; 4UFOP (FEDERAL UNIVERSITY OF OURO PRETO) / REDEMAT, Ouro Preto, Brazil; 5CEMIG, Belo Horizonte, Brazil; 6UFOP, Ouro Preto, Brazil; 7UNIVERSIDADE FEDERAL DE OURO PRETO, Ouro Preto, Brazil;
Type of Paper: Regular
Id Paper: 393
Topic: 3Abstract:
Facing energy crisis and global warming, the use of new energy sources such as sustainable ones has become imperative. In this context, CEMIG GT Company, ONDATEC Company and the Federal University of Ouro Preto, invested in a project under the Program (R&D) CEMIG/ANEEL for power generation. The objective of this work was to compare the energetic potential of waste gases (non-condensable gases-NCG) and liquid (condensable gases-CG) of a biomass pyrolysis plant by microwave to produce charcoal and the pilot plant that originated it. Therefore, the ONDATEC made the necessary improvements and built the Unit for energy and charcoal production (UPEC-250) by microwave with production capacity of 250 kg per hour. The pyrolysis process was in a continuous mode and in two stages: the biomass drying and the pyrolysis itself. As a result, charcoal, pyrolysis gas (NCG) and bio-oil (CG) were produced. According to the results obtained for the CG and the NCG, it was found a generation potential of 2.24 MWh of electric energy produced by one ton of charcoal, which can be a good alternative to relieve the production chain of charcoal and pig iron.
Keywords:
Biomass; pyrolysis; Microwave; Energy;
References:
[1] Brito, J.O. O uso energético da madeira.Estudos avançados 21(59).9 pages. Escola Superior de Agricultura (Esalq/USP),(2007).
[2] Meenakshi, P. Elements of Environmental Science and Engineering - pg 227; 237 – Ed. Prentice Hall, Delhi 312p., 2008.
[3] Thiago, P.P; Alves,I.C.N; Trugilho, P.F; Silva, V.O; Baliza, A.E.R. Compactação de biomassa vegetal visando à produção de biocombustiveis sólidos. Brazilian Journal of Foresty Research.12 pages (2010).
[4] Braga, N.P. Quantidade e qualidade das emissões atmosféricas na carbonização da madeira. II Forum nacional sobre carvão vegetal.24 pages, 2010. Arcelor Mittal Bioenergy.
[5] CEMIG – Energetic Company of Minas Gerais; 28° Energetic Balance of State of Minas Gerais; Belo Horizonte, 2014.
[6] Pereira, E.J.S; Pinho, J.T. Forno industrial de micro-ondas de 3kW alimentado por magnetrons de uso domestico. Study and Developing Group of Energetic Alternatives– GEDAE/DEEC/CT/UFPA. 5 pages. 2000.
[7] Fernández, Y; Arenillas, A; Menéndez, Á. Microwave Heating Applied to Pyrolysis. Instituto Nacional del Cárbon, 30 pages, 2011. DOI: 10.5772/13548.
[8] Trugilho, Et Al; Energia De Biomassa Florestal: A Contribuição Da Ufla. Published In Renabio: Biomassa & Energia, V. 1, N. 3, P. 221-224, 2004.
[9] Browning, B.L. The Chemistry Of Wood. Publicado Em New York, John Wiley &Sons.P. 689, 1963.
[10] Pettersen, R.C. The Chemical Composition Of Wood. In: Rowell, R. (Ed.) The Chemistry Of Solid Wood. Published In Washington, American Chemical Society. P.54-126, 1984.
[11] Scott, D. S.;Piskorz, J. The Flash Pyrolysis Of Aspen-Poplar Wood. Published In The Canadian Journal Of Chemical Engineering, N° 60. P. 666-74, 1982.
[12] Scott, D. S.; Piskorz, J. The Continuous Flash Pyrolysis Of Biomass. Published In The Canadian Journal Of Chemical Engineering, N°62. P.404–12, 1984.
[13] Scott, D. S.; Piskorz, J.; Bergougnou, M. A; Graham, R.; Overened, R. P. The Role Of Temperature In The Fast Pyrolysis Of Cellulose And Wood. Published In The Canadian Journal Of Chemical Engineering, N° 27. P.8–15, 1988.
[14] Horne, P. A.; Williams, P.T. Influence Of Temperature On The Products From The Flash Pyrolysis Of Biomass. Published In Fuel N°75. P.1051–9,1996.
[15] Fernando, S.; Adhikari, S.; Chandrapal, C.; Murali, N. Biorefineries: Current Status, Challenges, And Future Direction. Published In Energy Fuels,N° 20. P.1727–37, 2006.
[16] United Nations Framework Convention On Climate Change. Approved Baseline And Monitoring Methodology Am0041 “Mitigation Of Methane Emissions In The Wood Carbonization Activity For Charcoal Production”: Version 01. 2006. 63p. Disponible Link: Http://Www.Mct.Gov.Br/Upd_Blog/0014/14282.Pdf. Acess: August, 07 Of 2014.Full Text:
Click here to access the Full TextCite this article as:
S. Morais A, Leal T, Oliveira T, Assis P, Daniel A, Porto M, Ilidio J, Artilha R, Silva L, Ribeiro K. Evaluation of Energy Improvement of Gases Generated in Charcoal Production by Microwave. In: Kongoli F, Noldin JH, Mourao MB, Tschiptschin AP, D'Abreu JC, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 3: Takano Intl. Symp. / Metals & Alloys Processing. Volume 3. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 423-432.