2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 3: Takano Intl. Symp. / Metals & Alloys Processing

Editors:Kongoli F, Noldin JH, Mourao MB, Tschiptschin AP, D'Abreu JC
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:550 pages
ISBN:978-1-987820-26-3
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Recovery of Metallic Iron from Liquid LD Steel Slag

    Andre Lotto1; Antonio Malynowskyj1; Joao Batista Ferreira Neto1; Tiago Ribeiro1; Joao Faria1; Catia Fredericci1; Fabiano Chotoli1; Andre Nunis1; Valdecir Quarcioni1;
    1INSTITUTE FOR TECHNOLOGICAL RESEARCH, Sao Paulo, Brazil;
    Type of Paper: Regular
    Id Paper: 229
    Topic: 3

    Abstract:

    In this work, pyrometallurgical techniques were used to recover a portion of iron present in iron oxide form in slag of LD steelmaking process. Various reducing additions were tested in molten slag in pot, resulting in a significant recovery of iron with low phosphorus and sulfur content that enables reuse of this material as scrap in production and refining pig iron.

    Keywords:

    Recovery; Recycling; Slag; Steel;

    References:

    [1] M.F. Yu, O. Lourie, K. Moloni, T.F. Kelly and R.S. Ruoff: Strength and breaking mechanism
    [2] of multiwalled carbon nanotubes under tensile load, Science, 287 (2000), 637–640
    [3] B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl and R.O. Ritchie:
    [4] Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A, 334 (2002), 173–178
    [5] S. Berber, Y.K. Kwon and D. Tománek: Unusually high thermal conductivity of carbon
    [6] nanotubes, Phys. Rev. Lett., 84 (2000), 4613–4616
    [7] R. George, K.T. Kashyap, R. Rahul and S. Yamdagnim: Strengthening in carbon
    [8] nanotube/aluminum (CNT/Al) composites, Scr. Mater., 53 (2005), 1159–1163
    [9] H. Uozumi, K. Kobayashi, C. Masuda and M. Yoshida: Fabrication process of carbonaceous
    [10] fiber reinforced Al and/or Mg alloy(s) composite by squeeze casting, Adv. Mater. Res., 15–17 (2006) 209–14.
    [11] H.J. Choi, G.B. Kwon, G.Y. Lee and D.H. Bae: Reinforcement with carbon nanotubes in
    [12] aluminum matrix composites, Scr. Mater., 59 (2008), 360–363
    [13] H. Choi, J. Shin, B. Min, J. Park, D. Bae: Reinforcing effects of carbon nanotubes in structural
    [14] aluminum matrix nanocomposites, J. Mater. Res., 24 (2009), 2610–2616
    [15] C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li and Q. Cui: An approach to obtaining
    [16] homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al–matrix Composites, Adv. Mater., 19 (2007), 1128–1132
    [17] A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad and P. Borah: Fabrication and properties of
    [18] dispersed carbon nanotube–aluminum composites, Mater. Sci. Eng. A, 508 (2009), 167–173
    [19] A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka: Effect of carbon nanotubes (CNT)
    [20] content on the evolution of aluminum (Al)-CNT composite powders, Compos. Sci. Technol.,
    [21] 70 (2010), 2237–2241
    [22] H. Kwon and A. Kawasaki: Extrusion of spark plasma sintered aluminum-carbon nanotube
    [23] composites at various sintering temperatures, J. Nanosci. Nanotechnol., 9 (2009), 6542–6548
    [24] S.R. Bakshi and A. Agarwal: An analysis of the factors affecting strengthening in carbon
    [25] nanotube reinforced aluminum composites. Carbon, 49 (2011), 533–544
    [26] H. Kwon and M. Leparoux, Hot extruded carbon nanotube reinforced aluminum matrix
    [27] composite materials, Nanotechnology, 23 (2012), 415701
    [28] L. Jiang, Z. Li, G. Fan, L. Cao and D. Zhang: Strong and ductile carbon nanotube/aluminum
    [29] bulk nanolaminated composites with two-directional alignment of carbon nanotubes, Scr.
    [30] Mater., 66 (2012), 331–334
    [31] F. Ogawa and C. Masuda: Microstructure evolution during fabrication and microstructure-
    [32] property relationships in vapour-grown carbon nanofiber-reinforced aluminum matrix
    [33] composites fabricated via powder metallurgy, Compos. Part A, 71 (2015), 84–94
    [34] T. Peng and I. Chang: Uniformly dispersion of carbon nanotube in aluminum powders by wet
    [35] shake-mixing approach, Powder Technol., 284 (2015), 32–39
    [36] B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi and K. Kondoh: An approach for
    [37] homogeneous carbon nanotube dispersion in Al matrix composites, Mater. Design 72 (2015)
    [38] 1–8.
    [39] B. Chen, K. Kondoh, H. Imai, J. Umeda and M. Takahashi, Simultaneously enhancing strength
    [40] and ductility of carbon nanotube/aluminium composites by improving bonding conditions, Scr.
    [41] Mater., 113 (2016), 158–162
    [42] H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto,
    [43] T. Tsukada, C. Masuda and M. Yoshida, Fabrication process of carbon nanotube light/metal
    [44] matrix composites by squeeze casting, Mater. Sci. Eng. A, 495 (2008), 282–287
    [45] Y. Li, Y. Liu, N. Hu, Reinforcement effects of CNTs for polymer-based nanocomposites,
    [46] in: S. Yellampalli (Ed.), Carbon nanotubes–Polymer nanocomposites, INTECH, 2011,
    [47] 129–154.
    [48] D. Poirier, R. Gauvin and R.A.L. Drew: Structural characterization of a mechanically milled carbon nanotube/aluminum mixture, Compos. Part A, 40 (2009), 1482–1489
    [49] V.M. Segal, S. Ferrasse and F. Alford: Tensile testing of ultra fine grained metals, Mater. Sci. Eng. A, 422 (2006), 321–326
    [50] Y.S. Suh, S.P. Joshi and K.T. Ramesh: An enhanced continuum for size-dependent
    [51] strengthening and failure of particle-reinforced composites, Acta Mater., 57 (2009),
    [52] 5848–5861
    [53] M. Geni and M. Kikuchi: Damage analysis of aluminum matrix composite considering
    [54] non-uniform distribution of SiC particles, Acta Mater., 46 (1998), 3125–3133
    [55] R. Aghababaei and S.P. Joshi: Grain size-inclusion size interaction in metal matrix composites
    [56] using mechanism-based gradient crystal plasticity, Int. J. Solid Struct, 48 (2011), 2585–2594
    [57] K. Sugio,Y.-B. Choi and G. Sasaki: Effect of the interfacial thermal resistance on the effective
    [58] thermal conductivity of aluminum matrix composites, Mater. Trans., 57 (2016), 582–589
    [59] S.E. Shin, H.J. Choi and D.H. Bae: Electrical and thermal conductivities of aluminum-based
    [60] composites containing multi-walled carbon nanotubes, J. Compos. Mater., 47 (2012),
    [61] 2249–2256.
    [62] B. Chen, J. Shen, X. Ye, H. Imai, M. Takahashi and K. Kondoh, Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites, Carbon, 114 (2017), 198–208
    [63] X. Zhu, Y.G. Zhao, M. Wu, H.Y. Wang and Q.C. Jiang: Effect of initial aluminum alloy
    [64] particle size on the damage of carbon nanotubes during ball milling, Materials, 9 (2016), 173

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Lotto A, Malynowskyj A, Ferreira Neto J, Ribeiro T, Faria J, Fredericci C, Chotoli F, Nunis A, Quarcioni V. Recovery of Metallic Iron from Liquid LD Steel Slag. In: Kongoli F, Noldin JH, Mourao MB, Tschiptschin AP, D'Abreu JC, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 3: Takano Intl. Symp. / Metals & Alloys Processing. Volume 3. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 433-436.