2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 3: Takano Intl. Symp. / Metals & Alloys Processing
Editors: | Kongoli F, Noldin JH, Mourao MB, Tschiptschin AP, D'Abreu JC |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2015 |
Pages: | 550 pages |
ISBN: | 978-1-987820-26-3 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
< CD shopping page
Charcoal as an Additive to Cokemaking: Co2 Reactivity Study
Bruno
Flores1; Ismael
Flores1; Adria
Guerrero2; Daniel
Orellana1; Juliana
Goncalves Pohlmann1; Claudia
Barbieri1; Angeles
G. Borrego2; Eduardo
Osorio1; Antonio Cezar
Vilela1;
1FEDERAL UNIVERSITY OF RIO GRANDE DO SUL, Porto Alegre, Brazil; 2INSTITUTO NACIONAL DEL CARBON - INCAR, Oviedo, Spain;
Type of Paper: Regular
Id Paper: 113
Topic: 3Abstract:
The present work aimed to investigate the influence of charcoal addition of different particle sizes on metallurgical coke reactivity. Thus, an eucalyptus charcoal was added to a prime American medium volatile coking coal in three amounts (3, 5 and 8%) and in two different particle size ranges (below 1 mm and between 3 and 4 mm). Charges of the individual coal and coal/charcoal blends were carbonized in a laboratorial scale coke oven (1 kg). The reactivity of the produced bio-cokes and reference coke were examined and compared using thermal gravimetric analysis in a CO2 atmosphere. Morphological analyses via optical and scanning electronic microscopies using samples from before and after reactivity experiments were also carried out. Charcoal addition showed a tendency to increase coke reactivity and lower the temperature at which carbon gasification started. Morphological observations confirmed that charcoal particles tend to be preferentially consumed compared with the coke matrix. However, bio-cokes produced with charcoal addition up to 3% for both particle sizes and up to 5% for the coarser particle size had a similar behavior in terms of CO2-reactivity as the reference coke. The effects of charcoal addition on coke texture and CO2 surface area appeared to justify the differences in coke reactivity.
Keywords:
CO2; Charcoal; Coke; Energy;
References:
[1] Junginder. H. M.; Jonker. J. G. G.; Faaij. A.; Cocchi. M.; Hektor. B.; Hess. R.; Heinimö. J.; Henning. C.; Kranzl. L.; Marchal. D.; Matzenberger. L.; Nikolaisen. L.; Pelkmans. L.; Rosillo-Calle. F.; Schouwenberg. E.; Trømborg. E.; Walter. A. Summary. synthesis and conclusions from IEA Bioenergy Task 40 coutnry reports on international bioenergy trade. Utrecht. Netherlands. April. 2011.
[2] Balanço Energético Nacional - Relatório Final. Ministério de Minas e Energia. 2013. Disponível em: https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2013.pdf
[3] Instituto Do Aço Brasil. Relatório de Sustentabilidade 2013. p. 25. Disponível em: http://www.acobrasil.org.br/site/portugues/sustentabilidade/downloads/relatorio_sustentabilidade_2013v3.pdf
[4] Scherer SWG. Braga RNO. VI Panel of Pig Iron Production based on Charcoal –Plenary – Brazilian Green Pig Iron Industry. International Congress on the Science and Technology of Ironmaking – ICSTI. Rio de Janeiro. 2012.
[5] Instituto Aço Brasil. A Indústria do Aço no Brasil. In: Confederação Nacional Da Indústria. Brasília. CNI. 2012.
[6] Ariyama. T.; Murai. R.; Ishii. J.; Sato. M. Reduction of CO2 Emissitons from Integrated Steel Works and Its Subjects for a Future Study. ISIJ International. v. 45. n. 10. p. 1371-1378. 2005.
[7] Chunbao CX. Cang D. A Brief Overview of Low CO¬2 Emission Technologies for Iron and Steel Making. Journal of Iron and Steel Research. 2010.
[8] Hanrot. F.; Delinchant. J.; Pietruck. R.; Bürgler. T.; Babich. A.; Fernández.; Alvarez. R.; Diez. M. A. CO2 Mitigation for Steelmaking Using Charcoal and Plastics Wastes as Reducing Agents and Secondary Raw Materials. In: 1st Spanish National Conference on Advances in Materials Recycling and Eco - Energy Madrid. 12 - 13 Nov.. 2009.
[9] Coelho RJ. Silva OJ. Alves MT. Andrade LA. Assis PS. Modelos de previsão da qualidade metalúrgica do coque a partir da qualidade dos carvões individuais e do coque obtido no forno-piloto de coqueificação. 2004;57:27-32.
[10] Chatterjee A. Prasad HN. Possibilities of tar addition to coal as a method of improving coke strength. Fuel. 1983;62(5):591-600.
[11] Lahaye J. Aubert JP. Buscaihon A. Interaction between a coke and a tar. 2. Limit of tar penetration in coke porosity. Fuel. 1977;56(2):188-191.
[12] Nomura S. Kato K. Basic study on separate charge of coal and waste plastic in coke oven chamber. Fuel. 2005;84(4):429-434.
[13] Melendi S. Díez MA. Alvarez R. Barriocanal C. Relevance of the composition of municipal plastic wastes for metallurgical coke production. Fuel. 2011;90(4):1431-1438.
[14] Alvarez R. Pis JJ. Díez MA. Barriocanal C. Canga CS. Menéndez JA. A semi-industrial scale study of petroleum coke as an additive in cokemaking. Fuel Processing Technology. 1998;55(2):129-141.
[15] Barriocanal C. Hanson S. Patrick JW. Walker A. The quality of interfaces in metallurgical cokes containing petroleum coke. Fuel Processing Technology. 1995;45(1):1-10.
[16] Hanrot F. Sert D. Delinchant J. Pietruck R. Bürgler T. Babich A. Fernández M. Alvarez R. Diez MA. CO2 mitigation for steelmaking using charcoal and plastics wastes as reducing agents and secondary raw materials. In: 1st Conference on advances in materials recycling and eco–energy. Recimat09; 2009. paper S05-4.
[17] MacPhee JA. Gransden JF. Giroux L. Price JT. Possible CO2 mitigation via addition of charcoal to coking coal blends. Fuel Processing Technology. 2009;90(1):16-20.
[18] Ng KW. MacPhee JA. Giroux L. Todoschuk T. Reactivity of Bio-coke with CO2. Fuel Processing Technology. 2011;92(4):801-804
[19] Diez MA. Borrego AG. Evaluation of CO2 reactivity patterns in cokes from coal and woody biomass blends. Fuel. 2013;113:59-68.
[20] Gray, R. J. (1991). Some petrographic applications to coal, coke and carbons. Organic Geochemistry, 17(4), 535–555. doi:10.1016/0146-6380(91)90117-3
[21] Guerrero, A.G. Borrego, M.A. Diez. Influence of charcoal fines on the thermoplastic properties of coking coals and the optical properties of the semicoke. International Journal of Coal Geology
[22] Walker PL. Rusinko F. Austin LG. Gas reactions of carbon. New York: Academic Press; 1959.
[23] Chiu YF. Study of coke petrography and factors affecting coke reactivity. Ironmaking Steelmaking. 1982; 5:196-199
[24] Fujita H. Hijiriyama M. Nishida S. Gasification reactivities of optical textures of metallurgical cokes. Fuel. 1983;62: 875-879.
[25] Arenillas. A.; Rubiera. F.; Pevida. C.; Ania. C. O.; Pis. J. J. Relationship Between Structure and Reactivity of Carbonaceous Materials. Journal of Thermal Analysis and calorimetry. v. 76. p. 593-602. 2004.
[26] Matsumura, T., Ichida, M., Nagasaka, T., & Kato, K. (2008). Carbonization Behaviour of Woody Biomass and Resulting Metallurgical Coke Properties. ISIJ International, 48(5), 572–577. doi:10.2355/isijinternational.48.572
[27] Gill WW. Brown NA. Coin CDA. Mahoney MR. The influence of ash on the weakening of coke. Ironmaking Conference Proceedings. 1985;44:233-238.
[28] Price JT. Iliffe MJ. Khan MA. Gransden JF. Minerals in coal and high temperature properties of coke. Ironmaking Conference Proceedings. 1994;53:79-87.Full Text:
Click here to access the Full TextCite this article as:
Flores B, Flores I, Guerrero A, Orellana D, Goncalves Pohlmann J, Barbieri C, G. Borrego A, Osorio E, Vilela A. Charcoal as an Additive to Cokemaking: Co2 Reactivity Study. In: Kongoli F, Noldin JH, Mourao MB, Tschiptschin AP, D'Abreu JC, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 3: Takano Intl. Symp. / Metals & Alloys Processing. Volume 3. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 451-466.