2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 1: Aifantis Intl. Symp. / Multiscale Material Mechanics
Editors: | Kongoli F, Bordas S, Estrin Y |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2015 |
Pages: | 300 pages |
ISBN: | 978-1-987820-24-9 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
< CD shopping page
Validation And Identification Of Gradient-Elasticity From Full-Field Measurements
Julien
Rethore1; Christine
Kaltenbrunner2; Thi Bach Tuyet
Dang2; Philippe
Chaudet2;
1LAMCOS INSA LYON,CNRS, Villeurbanne, France; 2UNIVERSITE DE LYON, INSA LYON, Villeurbanne, France;
Type of Paper: Regular
Id Paper: 71
Topic: 1Abstract:
Gradient-elasticity and more generally gradient-enhanced continuum models have been extensively developed since the beginning of the twentieth century. These models have shown the ability to account for the effect of the underlying material heterogeneity at the macroscopic scale of the continuum. Despite of a great theoretical interest, gradient-enhanced models are usually difficult to interpret physically and even more to identify experimentally. This paper proposes an attempt to validate and identify a gradient-elasticity model for a material with a periodic micro-structure from experimental data. A set of dedicated experimental and numerical tools is developed for this purpose: first, the design of an experiment, then two-scale displacement field measurements by digital image correlation and dedicated pro-processing techniques and finally a model updating technique. This paper ends up with the full set of first and second-order elastic constants of a gradient-elasticity model which macroscopic kinematic has been validated by investigating the deformation of the unit cells at the microscopic scale.
References:
[1] Auffray, N., Bouchet, R., Brechet, Y., 2009. Derivation of anisotropic matrix for bidimensional strain-gradient elasticity behavior. International Journal of Solids and Structures 46 (2), 440–454.
[2] Besnard, G., Hild, F., Roux, S., 2006. ‘finite-element’ displacement fields analysis from digital images: Application to portevin-le châtelier bands. Experimental Mechanics 46 (6), 789–803.
[3] Boutin, C., 1996. Microstructural effects in elastic composites. International Journal of Solids and Structures 33 (7), 1023–1051.
[4] Cosserat, E., Cosserat, F., Brocato, M., Chatzis, K., 1909. Théorie des corps déformables. A. Hermann Paris.
[5] Dasgupta, S., Sengupta, D., 1990. A higher-order triangular plate bending element revisited. International Journal for Numerical Methods in Engineering 30 (3), 419–430.
[6] Eringen, A., Suhubi, E., 1964. Nonlinear theory of simple micro-elastic solids-i. International Journal of Engineering Science 2 (2), 189–203.
[7] Forest, S., 1998. Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV 8 (PR4), Pr4–39.
[8] Forest, S., Trinh, D. K., 2011. Generalized continua and non-homogeneous boundary conditions in homogenisation methods. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 91 (2), 90–109.
[9] Gologanu, M., Leblond, J., Perrin, G., Devaux, J., Suquet, P., 1995. Continuum micromechanics. Berlin: Springerverlag, 61.
[10] Gras, R., Leclerc, H., Roux, S., Otin, S., Schneider, J., Périé, J.-N., 2013. Identification of the out-of-plane shear modulus of a 3d woven composite. Experimental Mechanics 53 (5), 719–730.
[11] Kavanagh, K., Clough, R., 1971. Finite element applications in the characterization of elastic solids. International Journal of Solids and Structures 7, 11–23.
[12] Kouznetsova, V., Geers, M., Brekelmans, W., 2002. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering 54 (8), 1235–1260.
[13] Leclerc, H., Perie, J., Roux, S., Hild, F., 2009. Computer Vision/Computer Graphics CollaborationTechniques. Springer, Berlin, Ch. Integrated Digital Image Correlation for the Identification of Mechanical Properties.
[14] Mindlin, R., 1964. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis 16 (1), 51–78.
[15] Réthoré, J., 2010. A fully integrated noise robust strategy for the identification of constitutive laws from digital images. International Journal for Numerical Methods in Engineering 84, 631–660.
[16] Réthoré, J., Hild, F., Roux, S., 2008. Extended digital image correlation with crack shape optimization. International Journal for Numerical Methods in Engineering 73 (2), 248–272.
[17] Réthoré, J., Muhibullah, Elguedj, T., Coret, M., Chaudet, P., Combescure, A., 2013. Robust identification of elasto-plastic constitutive law parameters from digital images using 3d kinematics. International Journal of Solids and Structures 50 (1), 73-85.
[18] Toupin, R., 1964. Theories of elasticity with couple-stress. Archive for Rational Mechanics and Analysis 17 (2), 85–112.Full Text:
Click here to access the Full TextCite this article as:
Rethore J, Kaltenbrunner C, Dang T, Chaudet P. Validation And Identification Of Gradient-Elasticity From Full-Field Measurements. In: Kongoli F, Bordas S, Estrin Y, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 1: Aifantis Intl. Symp. / Multiscale Material Mechanics. Volume 1. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 149-162.