2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 1: Aifantis Intl. Symp. / Multiscale Material Mechanics

Editors:Kongoli F, Bordas S, Estrin Y
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:300 pages
ISBN:978-1-987820-24-9
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Grain Boundary Design of Bulk Nanomaterials for Advanced Properties

    Ruslan Valiev1;
    1UFA STATE AVIATION TECHNICAL UNIVERSITY, Ufa, Russian Federation;
    Type of Paper: Keynote
    Id Paper: 245
    Topic: 1

    Abstract:

    The concept of grain boundary (GB) design is developed for enhancement of properties of ultrafine-grained (UFG) nanostructured metals and alloys by tailoring different GBs (low angle and high angle ones, special and random, equilibrium and non-equilibrium, and so on), using severe plastic deformation (SPD). By variations of regimes and routes of SPD processing, we show for several light alloys (Al, Mg and Ti) and steels the ability to produce UFG materials with different grain boundaries, and their effect on mechanical and functional properties of the processed materials, in particular, on their strength and ductility, fatigue or superplasticity, thermostability and electric conductivity. We demonstrate several examples of this approach for attaining superior properties in various nanostructured metals and alloys. The origin of these phenomena is discussed on the basis of the results of microstructural studies and observations of deformation mechanisms. Special emphasis is laid on the innovation potential and first applications of SPD-produced nanometals.

    Keywords:

    Dislocation; Metals; Nanomaterials;

    Cite this article as:

    Valiev R. Grain Boundary Design of Bulk Nanomaterials for Advanced Properties. In: Kongoli F, Bordas S, Estrin Y, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 1: Aifantis Intl. Symp. / Multiscale Material Mechanics. Volume 1. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 269-270.